Where is the water in low-mass young stars?

Lars E. Kristensen

WISH

Ruud Visser, Ewine van Dishoeck, Greg Herczeg, Umut Yildiz, Irene San Jose-Garcia, Jes Jørgensen, Agata Karska, Michiel Hogerheijde, Simon Bruderer, Susanne Wampfler, and the WISH team

Star formation & water

- Pre-Herschel expectations:
- Bulk of envelope: H₂O in ice, x_{gas} ~ 10⁻⁹
- T > 100 K: x_{gas}
 jumps to 10⁻⁴
- WISH: test expectations

Visser et al. 2009 van Dishoeck et al. (2011)

Pre-Herschel observations

- Water observed extensively over 20 years from space (ISO-LWS, SWAS, Odin, Spitzer) (e.g., Ceccarelli et al. 1999, 2000; Nisini et al. 2000, 2002; Bergin et al. 2003; Hjalmarson et al. 2003; Watson et al. 2007; Melnick et al. 2008)
- Inner hot core or shocked outflowing gas?
- Herschel-HIFI: Gain in sensitivity and resolution
- WISH: observe ~ 80 sources to determine x(H₂O) in envelope and outflow: H₂O trail Posters: 1.36, 1.42, 1.74, 1.77, 1.102

Early Herschel results

Velocity scale: -100 to 100 km/s

- Envelope emission expected to be
 < 5 km/s...
- Emission outflow dominated, even in small beam (2000 AU)
- Ground-state H₂¹⁸O broad (Lefloch et al. 2010; Kristensen et al. 2010; Kristensen et al. in prep.)

Water bullets in a low-mass protostar

Absorbing envelopes

- Clearest sign of envelope: absorption also seen in H₂¹⁸O (Visser et al. in prep.)
- Traces x(out) directly: 10⁻⁸

Inner region

- 5h integration on excited H₂¹⁸O line (H₂¹⁸O 3₁₂-3₀₃ @ 1094 GHz)
- FWHM ~ 5 km/s
- **Direct** detection of inner region with singledish telescope (Visser et al. in prep.)

Envelope modelling

- Model infalling envelope using radiative transfer code (LIME; Brinch & Hogerheijde 2010)
- $H_2^{16}O$ traces x(out) and limits x(in)
- Excited $H_2^{18}O$ traces x(in)

Abundances

• x(in) determined to 3-6 x 10⁻⁶, i.e., < 10⁻⁴ !

Conclusions

- Inner H₂O abundance of a low-mass envelope determined
- Low-mass hot cores are dry; x(in) ~ 100 times lower than expected
- Inner envelope only probed by excited H₂¹⁸O

http://www.strw.leidenuniv.nl/WISH