Anions in Space and in the Laboratory

Veronica M. Bierbaum University of Colorado

lons are ubiquitous!

Interstellar Molecules

	СН	CN	CH⁺	OH	NH ₃	H ₂ O	H ₂ CO
	СО	H ₂	HCO⁺	CH₃OH	HC₃N	HCN	нсоон
	SiO	CS	CH₃CN	OCS	NH₂CHO	H ₂ S	HNCO
	CH₃CHO	CH₃CCH	CH₂NH	H ₂ CS	HNC	SO	CH ₃ OCH ₃
	CH₃NH₂	N_2H^+	C₂H	CH₂CHCN	CH₃CH₂OH	HCOOCH₃	SO ₂
	HDO	SiS	NS	NH ₂ CN	НСО	C ₃ N	H ₂ CCO
	C ₂	HNO	CH ₃ CH ₂ CN	HC ₇ N	HC₅N	HC ₉ N	C₄H
	NO	OCN⁻	CH₃SH	HNCS	C ₂ H ₄	HCS⁺	HOCO ⁺
ĺ	HOC⁺	CH ₃ C ₃ N	SiH ₄	CH₃C₄H	c-SiC ₂	C₃H	HCI
	C ₃ O	c-C ₃ H ₂	C₀H	HCNH ⁺	MgNC	C₅H	H_3O^+
	C ₂ S	C ₃ S	(CH ₃) ₂ CO	NaCl	AICI	KCI	AIF
	PN	CH ₃ NC	C ₃	c-C₃H	CH₂CN	HC₂CHO	C ₅
	SiC	C_2H_2	SiC ₄	CO ₂	CH₂	СР	$I-C_3H_2$
	HC₂N	NH	CH₄	C ₂ O	HCCNC	SiN	HNCCC
ĺ	SO⁺	NH ₂	CO ⁺	HC₃NH⁺	H₂CN	NaCN	N ₂ O
	MgCN	C ₈ H	H_3^+	H₂COH ⁺	C ₇ H	CH₃COOH	HC ₁₁ N
	HF	c-C ₂ H ₄ O	LiH	C₅N	SiC₃	SH	CH ₃
	CH₂OHCHO	SiCN	C_4H_2	C_6H_2	C ₆ H ₆	CH₂CHOH	AINC
	FeO	HOCH ₂ CH ₂ OH	NH ₂ CH ₂ COOH	N ₂	CH ₂ CHCHO	CH₃CH₂CHO	SiNC
	HC₄N	CO(CH ₂ OH) ₂	CH ₂ CCHCN	c-H ₂ C ₃ O	CH ₃ CONH ₂	CH ₃ C ₆ H	CH ₂ CNH
ĺ	CF⁺	CH ₃ C ₅ N	C ₆ H [−]	O ₂	C₄H⁻	НСР	CଃH⁻
	CH ₂ CHCH ₃	РО	CNCHO	ССР	C₃N⁻	NH ₂ CH ₂ CHN	PH ₃
	C₅N [−]	HCNO	AIO	HOCN	C ₂ H ₅ OCHO	C ₃ H ₇ CN	HSCN
	AIOH	CN⁻	H ₂ O ⁺	OH ⁺	C ₆₀	C ₇₀	H₂CI ⁺
	KCN	SH ⁺	FeCN				

http://www.astrochymist.org/astrochymist_ism.html

Laboratory and Astronomical Identification of the Negative Molecular Ion C₆H⁻ McCarthy, Gottlieb, Gupta and Thaddeus *Harvard-Smithsonian Center for Astrophysics*

Astrophysical Journal 652, L141 December 2006.

17 rotational lines between 8 & 187 GHz

Identified C_6H^- in IRC +10216 & TMC-1

 $C_4H^ C_6H^ C_8H^ CN^ C_3N$

Interstellar Molecules

СН	CN	CH⁺	ОН	NH ₃	H ₂ O	H ₂ CO
СО	H ₂	HCO⁺	CH₃OH	HC₃N	HCN	НСООН
SiO	CS	CH₃CN	OCS	NH ₂ CHO	H ₂ S	HNCO
CH₃CHO	CH₃CCH	CH₂NH	H₂CS	HNC	SO	CH ₃ OCH ₃
CH ₃ NH ₂	N₂H ⁺	C₂H	CH ₂ CHCN	CH ₃ CH ₂ OH	HCOOCH ₃	SO ₂
HDO	SiS	NS	NH ₂ CN	НСО	C₃N	H ₂ CCO
C ₂	HNO	CH ₃ CH ₂ CN	HC ₇ N	HC₅N	HC₃N	C₄H
NO	OCN [−]	CH₃SH	HNCS	C_2H_4	HCS⁺	HOCO⁺
HOC⁺	CH ₃ C ₃ N	SiH ₄	CH ₃ C ₄ H	c-SiC₂	C₃H	HCI
C ₃ O	$c-C_3H_2$	C ₆ H	HCNH⁺	MgNC	C₅H	H_3O^+
C ₂ S	C₃S	(CH ₃) ₂ CO	NaCl	AICI	KCI	AIF
PN	CH₃NC	C ₃	c-C₃H	CH ₂ CN	HC ₂ CHO	C ₅
SiC	C_2H_2	SiC ₄	CO ₂	CH ₂	СР	$I-C_3H_2$
HC ₂ N	NH	CH₄	C ₂ O	HCCNC	SiN	HNCCC
SO⁺	NH ₂	CO⁺	HC₃NH⁺	H ₂ CN	NaCN	N ₂ O
MgCN	CଃH	H_3^+	H₂COH⁺	C ₇ H	CH₃COOH	HC ₁₁ N
HF	c-C ₂ H ₄ O	LiH	C₅N	SiC ₃	SH	CH ₃
CH ₂ OHCHO	SiCN	C_4H_2	C_6H_2	C ₆ H ₆	CH ₂ CHOH	AINC
FeO	HOCH ₂ CH ₂ OH	NH ₂ CH ₂ COOH	N ₂	CH ₂ CHCHO	CH ₃ CH ₂ CHO	SiNC
HC₄N	CO(CH ₂ OH) ₂	CH ₂ CCHCN	c-H ₂ C ₃ O	CH ₃ CONH ₂	CH ₃ C ₆ H	CH ₂ CNH
CF⁺	CH ₃ C ₅ N	C ₆ H [−]	O ₂	C₄H⁻	НСР	CଃH⁻
CH ₂ CHCH ₃	PO	CNCHO	ССР	C₃N [−]	NH ₂ CH ₂ CHN	PH ₃
$C_5 N^-$	HCNO	AIO	HOCN	C₂H₅OCHO	C ₃ H ₇ CN	HSCN
AIOH	CN⁻	H_2O^+	OH⁺	C ₆₀	C ₇₀	H_2CI^+
KCN	SH ⁺	FeCN				

http://www.astrochymist.org/astrochymist_ism.html

Interstellar Molecular Synthesis

FA-SIFT-MS Instrument

Ion Production

Ion Selection

Reaction Flow Tube

Ion Detection

Flowing Afterglow-Selected Ion Flow Tube (FA-SIFT)

Features of the Flowing Afterglow

- > Thermal energy
- > Energy variability
- → Kinetic analysis
- High ion

density/sensitivity

 Coupling with other chemical versatility techniques lonic and neutral reactants

Negative Ion Chemistry

Reactions of Negative lons

- 1. Carbon chains (C_x⁻)
- 2. Hydrogenated carbon chains (HC_x⁻)
- 3. Organic anions $(H_w C_x N_y O_z)$
- 4. Nitrogen-containing carbanions
- (C_xN_y⁻) 5. Hydride anion (H⁻) → Summary

Future Directions (including PAH⁻)

Mass Spectrum for Cold Cathode DC Discharge

Mass Selecting and Injecting C₇⁻

Reactions of Carbon Chain Anions with H Atom

Reactant	Products	BR	k (cm³/s)
C ₄			
C ₅			
C ₆			
C ₇			
C ₈			
C ₉			
C ₁₀			

Reactions of Carbon Chain Anions with H Atom

Reactant	Products	BR	k (cm³/s)
C ₄	C₄H + e ⁻		6.2 x 10 ⁻¹⁰
C ₅	C₅H + e [¯]		6.2 x 10 ⁻¹⁰
C ₆	C ₆ H + e ⁻		6.1 x 10 ⁻¹⁰
C ₇			
C ₈			
C ₉			
C ₁₀			

Reactions of Carbon Chain Anions with H Atom

Reactant	Products	BR	k (cm ³ /s)
C ₄	C₄H + e ⁻		6.2 x 10 ⁻¹⁰
C ₅	C₅H + e ⁻		6.2 x 10 ⁻¹⁰
C ₆	C ₆ H + e ⁻		6.1 x 10 ⁻¹⁰
C ₇	C ₇ H + e ⁻	0.41	6.9 x 10 ⁻¹⁰
	C7H	0.59	
C ₈	C ₈ H + e ⁻	0.33	7.3 x 10 ⁻¹⁰
	CଃH	0.67	
C ₉	C ₉ H + e [¯]	0.17	7.2 x 10 ⁻¹⁰
	C₃H	0.83	
C ₁₀	C ₁₀ H + e	0.24	7.5 x 10 ⁻¹⁰
	C ₁₀ H ⁻	0.76	

Reactions of Cx with O Atom

Reactant	Products	k (cm³/s)
C ₂		
C4		
C ₅		
C ₆		
C ₇		

Reactions of Cx with O Atom

Reactant	Products	k (cm³/s)
C ₂	C + CO	5.8 x 10 ⁻¹⁰
C ₄	C_3 + CO	5.6 x 10 ⁻¹⁰
C ₅	C ₄ + CO	6.4 x 10 ⁻¹⁰
C ₆	C ₅ + CO	4.7 x 10 ⁻¹⁰
C ₇	C ₆ + CO	5.3 x 10 ⁻¹⁰

Reactions of Cx with N Atom

Reactant	Products	k (cm³/s)
C ₂		
C ₄		
C ₅		
C ₆		
C ₇		

Reactions of Cx with N Atom

Reactant	Products	k (cm ³ /s)	EA(C _x) eV
C ₂	CN ⁺ C	2.3 x 10 ⁻¹⁰	3.27
C ₄	$CN^{-} + C_3$	2.0 x 10⁻¹⁰	3.88
	C_3 + CN		
C ₅	CN + C4	2.7 x 10 ⁻¹⁰	2.84
	C_4 + CN		
	$C_3N + C_2$		
C ₆	$CN^{-} + C_{5}$	1.5 x 10 ⁻¹⁰	4.19
	C₅ + CN		
	$C_3N + C_3$		
C ₇	$CN^{-} + C_{6}$	2.2 x 10 ⁻¹⁰	3.39
	C_6 + CN		
	$C_3N + C_4$		
	$C_5N + C_2$		

Negative Ion Chemistry

Reactions of Negative lons

- 1. Carbon chains (C_x⁻)
- 2. Hydrogenated carbon chains (HC_x⁻)
- 3. Organic anions $(H_w C_x N_y O_z)$
- 4. Nitrogen-containing carbanions
- (C_xN_y⁻) 5. Hydride anion (H⁻) → Summary

Future Directions (including PAH⁻)

Nitrogen-Containing Carbanions

Reactions of C_x N_y^- with H atoms $C_x N^- (x = 1 - 6)$

Reactions of C_xN⁻ with H atoms

Reactions of C_x N_y^- with H atoms $C_x N_2^-$ (x = 1, 3 – 5)

kcal/mol, CCSD(T)/aug-cc-pVDZ//B3LYP/aug-cc-pVTZ

Reactions of $C_x N_y^-$ with H atoms $C_x N_3^-$ (x = 2, 4) b) $C_4 N_3^-$ + H

High energy TS and Reaction

Endothermic pathways

kcal/mol, CCSD(T)/aug-cc-pVDZ//B3LYP/aug-cc-pVTZ

Interstellar Molecular Synthesis

Summary – General Themes Reactions of Negative Ions + Unreactive with H₂

- → React with H by associative detachment Rate often correlates with exothermicity Some fragmentation pathways Alternation in reactivity for x=even or odd
- → React with N and O Rich variety of pathways O-atom more rapid than N-atom
- Computations

 C_x^{-}

HC_v⁻

Nitriles

Aldehydes

Ketones

Esters

Acids

Alcohols

Glycine

 $C_x N_v^{-}$

- Provide insight to products & energies Importance of spin conservation
- > Processes provide routes to neutrals and ions observed in interstellar clouds

Future Directions

- Quantify product ratios for anion reactions
 Account for associative detachment and ionic products,
 mass discrimination, secondary reactions
- → Study additional reactions of C_xN_y⁻ With N and O and other reagents

Study PAH⁻ (and larger PAH⁺/PAH⁻)
 Develop and implement LIAD and ESI sources

PAH Anions Inclusion of PAHs in dense clouds

- PAH⁻ become the dominant carriers of negative charge
- Free e⁻ are replaced by PAH⁻
 Reduces overall ionization fraction
 - Neutralization of atomic cations is enhanced

Wakelam & Herbst, ApJ 680, 371 (2008)

 Deprotonated PAHs are more stable than the parent radical anions

Hammonds & Sarre,

Poster 1.34

Electron affinities of PAHs and dehydrogenated PAH radicals

Laser Induced Acoustic Desorption

Electrospray Ionization

•High voltage (1-5 kV) supplied to needle.

Acknowledgments

Ted Snow

Valery Le Page Cindy Barckholtz Yeghis Keheyan Nicholas Betts Oscar Martinez Brian Eichelberger Momir Stepanovic

NASA NSF

Department of Chemistry and Biochemistry Center for Astrophysics and Space Astronomy University of Colorado, Boulder

Department of Chemistry and Biochemistry Center for Astrophysics and Space Astronomy University of Colorado, Boulder

Callie Cole

Reactions of Organic Anions with H atoms

