Herschel detection of C₃ in star forming regions

Bhaswati Mookerjea Tata Institute of Fundamental Research, Mumbai, India with

T. Giesen, J. Stutzki, J. Cernicharo + PRISMAS

C₃ detection with Herschel

- Building blocks for more complex carbon-rich molecules in space.
- Candidates for the diffuse interstellar bands (DIBs).
- Carbon chains have conspicuously high abundance in the interstellar medium

Transitions of C₃ & Pre-Herschel Status

- **Electronic:** in the optical & UV (Poster by Krelowski et al.) in absorption towards stars, in comets and in circumstellar shells.
- Asymmetric stretching modes around 5 µm also in diffuse ISM.
- Low-energy bending modes in the FIR toward Sgr B2: ISO-LWS (Cernicharo et al. 2000) & KAO (Giesen et al. 2001)

Cernicharo et al. 2000

ν_2 Bending Modes of C₃

 THz sideband laboratory spectroscopy in Cologne & Berkeley to determine the frequencies accurately

• Herschel/HIFI accesses the C₃ population in high A_v

PRISMAS Observations of C₃

- As a part of PRobing the ISM using Absorption Studies GTKP (PI: M. Gerin) 5 bending mode transitions of C₃ at ν > 1.6 THz were observed in absorption towards 8 bright continuum sources.
- Multiple J lines to determine column densities and temperature for the ground vibrational state.
- Observations are complete. Baseline issues remain for some of the sources.

Mookerjea, Giesen, Stutzki et al. 2010, A&A

Detection of C₃ in FIR

C₃ in the warm envelope around the hot core is detected in absorption.

HIFI observations not sensitive enough to detect C₃ in diffuse clouds along the line of sight.

All C_3 lines from one source are fitted simultaneously with gaussians to derive opacities.

B. Mookerjea (TIFR, Mumbai)

C₃ detection with Herschel

Rotational Diagrams

W31C: N(C₃) = 3.5×10^{14} cm⁻² W49N: N(C₃) = 5.2×10^{14} cm⁻² DR21 (OH): N(C₃) = 4.4×10^{14} cm⁻²

T_{rot} consistent with T_{dust}
x(C₃) ~ a few 10⁻⁹ relative to H₂

- Continuum source is coexistent with the gas absorbing $C_3 \implies$ IR pumping of C_3 is significant.
- Source intrinsic continuum partially fills in the line absorption.
- Radiative Transfer Models : FIR pumping by the dust continuum and a temperature gradient along the line of sight.

Results for W31C

Black:
$$n(H_2) = 10^5 \text{ cm}^{-3}$$
, $x(C_3) = 5 \times 10^{-8}$
 $T_{kin} = 50 \text{ K}$.
Red: $n(H_2) = 5 \times 10^5 \text{ cm}^{-3}$, $x(C_3) = 10^{-8}$,
 $T_{kin} = 50 \text{ K}$.
Blue: $n(H_2) = 5 \times 10^5 \text{ cm}^{-3}$, $x(C_3) = 10^{-8}$,

 $T_{\rm kin} = 30$ K.

In the presence of strong IR radiation the ground vibrational states are always thermalized irrespective of the adopted collision rates

 $u_2 = 1-0 \text{ transitions}$ dominated by IR pumping.

 Results are most sensitive to the adopted kinetic temperature.

• $N(C_3) = 1.5 \times 10^{15} \text{ cm}^{-2}$.

C₃ so far

- Diffuse gas traced by UV & optical transitions and dense star forming regions in FIR transitions of C_3
- In the FIR all sources analyzed so far contain similar amounts of C_3 and this matches well with the column densities found in Sgr B2 with ISO.
- \bullet Abundance in the diffuse clouds $<10^{-8}$ and in star forming regions $\sim 10^{-8}$
- $x(C_3) \sim 10^{-8}$ consistent with warm-up chemical models of the environment of hot cores (Hassel et 2008).
- Detailed radiative transfer models for all sources are being constructed.