Gas-Phase Reactions in the ISM: Rate coefficients, temperature-dependences, and reaction products

> *lan Smith Department of Chemistry University of Cambridge*

> > IAU Symposium 280: "The Molecular Universe" Toledo, Spain: 29 May – 3 June 2011

A little (personal) history

1987: Rate Coefficients in Astrochemistry (TJ Millar & DA Williams) (IWMS) Experimental Measurements of the Rate Constants for Neutral-Neutral Reactions

1996: IAU Symposium 178: Molecules in Astrophysics: Probes and Processes (E F van Dishoeck)

(IWMS) Reactions between Neutral Species at Low Temperatures: Laboratory Results and Astrophysical Modelling

2011: IAU Symposium 280: Gas-Phase Chemistry in the ISM: Rate coefficients, temperature-dependences, and reaction products

Gas-phase reactions of different types included in the OSU kinetic database (version osu-09-2008) for astrochemistry.

Type of process	Example	Number in model
Gas-grain interactions:	$H + H + grain \rightarrow H_2 + grain$	14
Direct cosmic ray processes	$H_2 + \zeta \rightarrow H_2^+ + e$	11
Cation-neutral reactions	$H_2^+ + H_2 \rightarrow H_3^+ + H_2$	2933
Anion-neutral reactions	C^- + NO \rightarrow CN^- + O	11
Radiative associations (ion)	$C^+ + H_2 \rightarrow CH_2^+ + hv$	81
Associative detachment	$C^- + H_2 \rightarrow CH_2 + e$	46
Chemi-ionization	$O + CH \rightarrow HCO^+ + e$	1
Neutral-neutral reactions	$C + C_2H_2 \rightarrow C_3H + H$	382
Radiative association (neutral)	$C + H_2 \rightarrow CH_2 + hv$	16
Dissociative recombination	$N_2H^+ + e \rightarrow N_2 + H$	539
Radiative recombination	$H_2CO^+ + e \rightarrow H_2CO + hv$	16
Anion-cation recombination	$HCO^+ + H^- \rightarrow H_2 + CO$	36
Electron attachment	$C_6H + e \rightarrow C_6H^- + hv$	4
External photo-processes ^a	$C_3N + hv \rightarrow C_2 + CN$	175
Internal photo-processes ^a	$CO + hv \rightarrow C + O$	192

Kinetic information needed for Chemical Models

Rate coefficient and its dependence on temperature. For reaction between A and B:

- d[A] / dt = - d[B] / dt = k(T) [A] [B]

In models: $k(T) = \alpha (T/300)^{\beta} \exp(-\gamma/T) - but caution!$

Products of reaction

(a) thermodynamics **may** demonstrate that only one channel is open;

(b) determination of 'branching ratios' can be 'challenging' Gas-phase reactions of different types included in the OSU kinetic database (version osu-09-2008) for astrochemistry.

Type of process	Example	Number in model
Gas-grain interactions:	$H + H + grain \rightarrow H_2 + grain$	14
Direct cosmic ray processes	$H_2 + \zeta \rightarrow H_2^+ + e$	11
Cation-neutral reactions	$H_2^+ + H_2^- \rightarrow H_3^+ + H_2^-$	2933
Anion-neutral reactions	C^- + NO \rightarrow CN^- + O	11
Radiative associations (ion)	$C^+ + H_2 \rightarrow CH_2^+ + hv$	81
Associative detachment	$C^- + H_2 \rightarrow CH_2 + e$	46
Chemi-ionization	$O + CH \rightarrow HCO^+ + e$	1
Neutral-neutral reactions	$C + C_2H_2 \rightarrow C_3H + H$	382
Radiative association (neutral)	$C + H_2 \rightarrow CH_2 + hv$	16
Dissociative recombination	$N_2H^+ + e \rightarrow N_2 + H$	539
Radiative recombination	$H_2CO^+ + e \rightarrow H_2CO + hv$	16
Anion-cation recombination	$HCO^+ + H^- \rightarrow H_2 + CO$	36
Electron attachment	$C_6H + e \rightarrow C_6H^- + hv$	4
External photo-processes ^a	$C_3N + hv \rightarrow C_2 + CN$	175
Internal photo-processes ^a	$CO + hv \rightarrow C + O$	192

Ion-Neutral Reactions: Experimental Methods

'Trapping Methods':

(a) ICR – Ion Cyclotron Resonance: 300 K
 (b) Ion Traps: especially 22-pole trap (Gerlich): down to 10 K, especially useful for study of *radiative association*

'Flow Methods':

(a) FA – Flowing Afterglow: $82 \le (7/K) \le 600$; later $300 \le (7/K) \le 1800$

- (b) SIFT Selected Ion Flow Tube: typically, down to 80 K, also one study from 18 K to 295 K
- (c) SIFDT Selected Ion Flow Drift Tube extends measurements to much higher collision energies; up to = 1800 K;
- (d) CRESU Reaction Kinetics in Uniform Supersonic Flows: $8 \le (T/K) \le 300$

(Anicich, Ap. J. Supplt., 84, 215 (1993); Viggiano, PCCP, 8, 2557 (2006))

Ion-Neutral Reactions: Experimental Methods

- As mass spectrometry is used to observe loss of ionic reactant, ionic product(s) can be observed hence, branching ratios
- Methods used for reactions of cations can be adapted to study the reactions of anions (Veronica Bierbaum)
- In most studies of ion-neutral reactions, the neutral reactant is a 'stable' (i.e., non-radical) species. However, SIFT method adaapted to study of reactions between ions and radical atoms (Veronica Bierbaum)

(Snow & Bierbaum, Ann. Rev. Anal. Chem. 44, 367 (2006))

Ion-Neutral Reactions: T-dependence of rate coefficients

- For most ion-neutral –reactions, there is no activation barrier, rather the rate coefficient is determined by 'capture': that is, the ability of the long-range 'electrostatic potential' to bring the reactants into close contact 'against' the requirement to conserve angular momentum
- The 'Langevin model' assumes attraction between charge and induced dipole, leading to:

$$k_{\rm L} = 2\pi e (\alpha / \mu)^{1/2}$$

For reactions between ions and dipolar neutral molecules, the longrange potential is more complex (depends on orientation). Ratio of rate coefficient to the Langevin value has been parameterised:

 $k_D / k_L = ax + b$ where $x = \mu_D / (2\alpha k_B T)^{1/2}$

Ion-Neutral Reactions: tests of simple capture models

CRESU experiments provide a good test of predictions of Tdependence for reactions between simple ions and neutral (non-polar and polar) molecules

Neutral-Neutral Reactions: Experimental Methods

Discharge-Flow Methods':

(a) Reaction of atomic (H, O, N, Cl) and diatomic radicals: typically, 200 ≤ (*T*/K) ≤ 500
(b) optical and mass spec. methods to observe loss of reactants (formation of products?)
(c) HTFFR (Fontijn) reaches *ca*. 1320 K

'Pulsed Laser Photolysis Methods':

(a) coupled to optical methods for detection (e.g. LIF): typically 200 ≤ (*T*/K) ≤ 600 some experiments down to 80 K
(b) HTPR (Fontijn) reaches *ca*. 1430 K
(c) CRESU – Reaction Kinetics in Uniform Supersonic Flows: 13 ≤ (*T*/K) ≤ 300

Both methods provide data on (radical + molecule) and (radical + radical) reactions but are difficult at extremes of temperature

Measuring product yields/branching ratios is generally difficult

(http://www.iupac-kinetic.ch.cam.ac.uk; http://jpldataeval.jpl.nasa.gov) (Baulch, D.L. et al., 2005, *J. Phys. Chem. Ref. Data*, 34, 757)

Neutral-Neutral Reactions: in the ISM and CRESU Experiments

- Of the observed 159 species in the ISM (July 2010): 17 are cations, 6 anions, 136 electrically neutral
- Of the 136 neutral species: many are free radicals (e.g., CH, CN, C₂H, C₄H, etc) and many are 'unsaturated' (C₂H₂, C₂H₄, HC₂CN, HC₄CN etc)
- Clearly scope for neutral-neutral reactions
- In CRESU experiments, radicals (C, AI, Si, B, O, CN, OH, CH, C₂H, C₂, C₄H) are formed by pulsed laser photolysis, removal followed by LIF or using chemiluminescent techniques
- Co-reactants: principally HC's, CH₄, C₂H₄, C₂H₂,.....
- Radical-radical reactions difficult to study only one $O + OH \rightarrow O_2 + H$

Neutral-Neutral Reactions: *T*-dependence of rate coefficients

- For most reactions between radicals and saturated molecules, $\gamma > 0$, k(T) increases with T: e.g. CN + H₂ and C₂H + H₂
- For reactions where $k(298 \text{ K}) \ge 10^{-11} \text{ cm}^3 \text{ s}^{-1}$: general trend is for k(T) to increase as T is lowered
- However, the form of k(T) is variable
- Suggests the absence of an activation barrier and that values of k(T) are determined by capture
- Product yields/branching ratios difficult to measure

One example: $CN + NH_3 \rightarrow products$

- Can we explain the T-dependence?
- Can we determine the products? That is HCN + NH₂ or NCNH₂ + H?

Neutral-Neutral Reactions: branching ratios

- No 'universal' method
- Ab initio calculations
- Experiments on reactions that yield H atoms
- a) Bordeaux group (Bergeat, Loison, et al) use a flow system and create CH radicals (CHBr₃ + 3 K \rightarrow CH + 3KBr) and observe H atoms by 'resonance fluorescence'
- b) Leeds group (Blitz, Seakins, et al) carry out time-resolved experiments $CHBr_3 + 3 hv \rightarrow CH + 3Br$) and observe H atoms by LIF 'laser-induced fluorescence'

Note that a number of important low *T* reactions involve addition of radical followed by H-atom elimination e.g. $CH + C_2H_2 \rightarrow C_3H + H$

Neutral-Neutral Reactions: Theory and Experiments on $CN + NH_3 \rightarrow products$

- Ab initio calculations of reaction path (Dahbia Talbi)
- No low energy path to $NCNH_2 + H$; reaction proceeds 100% to $HCN + NH_2$

 Calculations of k(T) using two-transition state method of Klippenstein & Georgievskii

(D Talbi & IWMS, PCCP, 11, 8477 (2009))

Neutral-Neutral Reactions: Theory and Experiments on $CN + NH_3 \rightarrow products$

Large points show experimental rate coefficients from 23 to ca. 750 K

Small points and lines show results of TST calculations with different choices for the inner transition state barrier

Neutral-Neutral Reactions: Theory and Experiments on $CN + NH_3 \rightarrow products$

Yield of H atoms from $CN + NH_3 < 5\%$

Gas-Phase Chemistry: role of modelling

- Main aim is to reproduce the observed molecular abundances in different regions of ISM
- Inclusion of errors on the rate coefficients allows one to identify significant discrepancies
- Modelling can also be used to identify 'important reactions'
- In KIDA (Kinetic Database for Astrochemistry) efforts are made to give estimate of uncertainties
- In KIDA, 'data sheets' are provided for important reactions

http://kida.obs.u-bordeaux1.fr : Valentine Wakelam and others

Gas-Phase Chemistry: some 'take home messages'

- Ion-neutral reactions measured over wide *T*-range and quite wellunderstood – it seems that charge exchange be treated by same (Langevin) methods as atom/ion transfers?
- Extension of CRESU experiments to lower temperatures: 5 K?
- Low temperature trapping experiments on radiative association largely restricted to cation + H_2 reactions. No measurements on neutral-neutral associations: e.g. C + $H_2 \rightarrow CH_2 + hv$
- More details in IWM Smith, Ann Rev Astronom Astrophys, to be published this year.

Radical-Molecule Reactions: CN, $C_2H + H_2$

$k(T) = \alpha (T/300)^{\beta} \exp(-\gamma/T)$

	$CN + H_2 \rightarrow HCN + H$	$C_2H + H_2 \rightarrow HCCH + H$
α / cm ³ s ⁻¹	5.0 × 10 ⁻¹³	1.95 × 10 ⁻¹²
β	2.60	2.32
γ / K	960	444
<i>k</i> (1000 K)/ cm ³ s ⁻¹	4.4 × 10 ⁻¹²	2.0 × 10 ⁻¹¹

Reported Interstellar and Circumstellar Molecules

N=2	N=2	N=3	N=3	N=4	N = 5	N = 6	N = 7	N = 8	N = 9	N = 10
H₂	AICI	H ₃ +	HDO	NH ₃	CH₄	СН₃ОН	CH ₃ NH ₂	HCOOCH ₃	(CH ₃) ₂ O	(CH ₃)CO
СН	PN	CH ₂	ocs	H₃O⁺	SiH ₄	CH₃SH	CH₃CCH	CH ₃ C ₂ CN	C₂H₅OH	CH₃C₄CN
CH⁺	SiN	NH ₂	MgCN	H ₂ CO	CH₂NH	C ₂ H ₄	CH₃CHO	C ₆ H ₂	C₂H₅CN	
NH	SiO	H₂O	MgNC	H ₂ CS	H ₂ C ₃	CH₃CN	c-CH ₂ OCH ₂	С ₇ Н	CH₃C₄H	CH₃CH₂CH O
ОН	SiS	H₂S	NaCN	I-C₃H	<i>I</i> -C ₃ H ₂	CH₃NC	CH ₂ CHCN	HOCH ₂ CHO	C ₈ H	(CH ₂ OH) ₂
HF	CO+	C ₂ H	SO ₂	<i>с</i> -С ₃ Н	c-C ₃ H ₂	H₂CCHO	HC₄CN	CH₃COOH	HC ₆ CN	
C ₂	SO⁺	HCN	N ₂ O	нссн	H ₂ CCN	NH ₂ CHO	C ₆ H	H ₂ CCCHCN	CH ₃ CONH ₂	
CN	РО	HNC	SiCN	HCNH+	H ₂ NCN	HC₃NH⁺	H ₂ CCHOH	H₂C ₆	C ₈ H⁻	
СО	SH	НСО	CO ₂	H ₂ CN	CH₂CO	H ₂ C ₄	C₀H⁻	CH ₂ CHCHO	CH ₃ CHCH ₂	N = 11
CS	AIF	HCO⁺	c-SiC₂	<i>с</i> -С ₃ Н	нсоон	C₅H		CH ₂ CCHCN		HC ₈ CN
СР	FeO	HOC+	SiNC	HCCN	C₄H	C₅N				HCOOC₂H
NO	SiC	HN ₂ +	AINC	HNCO	HC ₂ CN	HC₄H				N = 12
NS	CF+	HNO	НСР	HOCO+	HC ₂ NC	HC₃CN				C ₆ H ₆
SO	N ₂	HCS+	C ₂ P	HNCS	C₄Si	c-C₃H₂O				C ₃ H ₇ CN
HCI	LiH	C ₃	AIOH	C ₂ CN	C ₅	H ₂ CCHNH				N = 13
NaCl	SiH	C ₂ O	H₂O⁺	C ₃ O C ₃ S	C₄N	C₅N⁻				HC ₁₀ CN
KCI AlO	02	C ₂ S	H₂CI⁺	SiC ₃ PH ₃	H₂COH⁺					C₂H₅OCH₃

CRESU apparatus configured for radical-neutral reactions

