Time-dependent Anion Chemistry in the CSE IRC+10216

<u>M. Guélin</u>(1,2), M. Agundez(2), J. Cernicharo(3), C.A. Gottlieb (4), M. McCarthy(4), P. Thaddeus (4)

(1)IRAM, France; (2) Obs. Paris, France ; (3)CSIC-Madrid, Spain; (4) Harvard University, USA

Why study anions ? (I)

They are good for our health!

Taroko, Taiwan

Why study IS anions? (II)

- The presence of C-chain anions in interstellar space was predicted long ago on theoretical grounds (e.g. Herbst 1981)
- The first IS anion, C₆H⁻, was identified in 2006 (McCarthy et al.)
- These anions are believed to be mainly formed by radiative attachment of an electron on a C-chain radical:

$$A + e \rightarrow (A^-)^* \rightarrow A^- + hv.$$
 rate: kra

 <u>The observation of IS anions offers the opportunity</u> to test our understanding of radiative attachment reactions</u>
 M. Guélin et al., IAU Symp 280

IRC+10216 (CW Leo) as chemical and spectroscopic laboratory

- 78 molecular species detected to date
- Wealth of linear C-chain molecules and radicals
- All known **IS anions** observed there
- (Relatively) well constrained physical conditions
- Expanding envelope gives access to time dimension

I. C. Leão et al.: The CSE of IRC+10216

Emission at v=v_{star}±3 kms⁻¹

Guélin et al. 2000

Emission at $v=v_{star}\pm 3 \text{ kms}^{-1}$

D-V-Trung & Lim 2006

Observed interstellar anions (gas phase):

- C_2H^- ?? IRC + 10216 (one single line!)
- C_4H^- IRC + 10216, L1527
- C₆H⁻ IRC+10216, Dark Clouds TMC1, Lupus-1A, L1512 (Auriga), Protostellar cores L1527, L1544, L1251A (Cepheus)
- C_8H^- TMC1, Lupus-1A, IRC + 10216
- C_3N^- IRC + 10216
- **C**₅**N**⁻ **IRC**+10216 (*no lab data yet!*)
- CN⁻ IRC+10216

Excerpt from IRC+10216 spectral survey with the IRAM 30-m tel

Expected model abundance of C-chain anions (smoothly decreasing density distribution)

Agundez et al. A&A.2010st al., IAU Symp 280

First map of an anion (PdBI, Guélin et al.)

M. Guélin et al., IAU Symp 280

New high angular&spectral resolution map of anions (PdBI, Guélin et al.)

C₆H

New high angular&spectral resolution map of anions (PdBI, Guélin et al.)

Average intensity in concentric rings of radius R, for each velocity channel

velocity (km/s)

First conclusion

C₆H⁻ and C₅N⁻ appear at smaller radii (<u>much earlier</u>) than predicted.

C₄H⁻ appears further out (much later) tha predicted.

Neutral species	Activation Energy (eV)	Anion / Neutral (%)	rate * k _{ra} (astro) cm ³ s ⁻¹	rate ** k _{ra} (theor) cm ³ s ⁻¹
C ₂ H	3.0	< 0.0014	< 10-11	2.0 10-15
C ₄ H	3.6	0.0074	4 10-11	1.1 10-8
C ₆ H	3.8	6.8	3 10-8	6.2 10-8
C ₈ H	4.0	26.	1.5 10-7	6.2 10-8
CN	3.8	0.25	2 10-9	1.4 10-17&
C ₃ N	4.6	0.42	3 10-9	2 10-10 @
C ₅ N	4.5	58. (?)	5 10-7 (?)	

* M. Agundez (PhD thesis 2009); rates scaled to 300 K
** Herbst & Osumara 2008, @Petrie & Herbst 1997
@ Petrie 1996

Second conclusion

The observed abundances of C₄H- and CNdisagree with predictions based on direct electron attachment on C₄H and CN

Other formation mechanisms for CN⁻?

CN + eCN[•] \rightarrow $MgNC + e \rightarrow$ CN⁻ $C_n + N$ CN⁻ \rightarrow dust grains ?

Conclusions

- All 6 anions detected so far in gas phase have been seen in the Circumstellar Envelope IRC+10216
- Envelope expansion offers an unique opportunity to test the time-dependence of the chemistry
- Electron radiative attachment rates kra can be constrained
- There is definitively a problem with the theoretical estimates of $k_{ra}(C_4H)$
- C₆H- and C₅N- appear at smaller radii (<u>much earlier</u>) than predicted. C₄H- further out (much later)
- CN is probably mostly formed by another process: reaction of large C-anions (C_n⁻) with N atoms, dissociative electron attachment on e.g. MgNC,..
- What's next? NCO- microwave spectrum recently observed at Harvard