

Max-Planck-Institut für Astronomie

seit 1558 Friedrich-Schiller-Universität Jena

Spectroscopy of PAHs with carbon side chains

Gaël Rouillé Laboratory Astrophysics Group

Gaël Rouillé, Mathias Steglich, Yvain Carpentier, Friedrich Huisken

Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena

Thomas Henning

Max Planck Institute for Astronomy

Acknowledgments

Hans-Joachim Knölker, Ingmar Bauer, Regina Czerwonka

Chemistry Department, Technical University Dresden

Motivations

Polycyclic aromatic hydrocarbon (PAH) molecules in space

- IR emission bands have been attributed to PAHs ("aromatic IR bands")
- PAHs are candidates for the carriers of the diffuse interstellar bands (DIBs)
- PAHs may contribute to the UV bump of the interstellar extinction curve at 2175 Å (Steglich et al. 2010)

Aromatic-aliphatic structures in analogues of cosmic carbonaceous grains

- Interconnected aromatic and aliphatic structures (e.g. Jäger et al. 2008)
- Duley & Hu (2009): "[...] we suggest that a component of PAHs in interstellar sources have attached sp-bonded chains."

Species

Expectations in comparison with parent PAHs

IR region

Emission at typical vibrational wavelengths (not molecule specific), for instance:

- C≡C stretching at 4.7 µm
- ≡C−H stretching at 3.0 µm

Radio domain

Emission of rotational lines due to the permanent electric dipole moment

UV/vis region

Redshifted electronic transitions: Marsh & Wornat (2000) on the absorption spectra of ethynyl-PAHs in solution at room temperature

Matrix isolation spectroscopy

1st step: matrix deposition

2nd step: spectroscopy

Anthracene and derivatives – in Ne matrix at 6 K

G. Rouillé – IAU Symposium 280 – 3 June 2011 – Toledo

7

Phenanthrene and derivatives – in Ne matrix at 6 K

Laboratory data for searches in space

- UV/vis region jet-cooled absorption spectra column densities of interstellar PAHs (Gredel et al. 2011, Salama et al. 2011)
- **IR region** rare gas matrix-isolated absorption spectra

Radio domain jet-cooled rotational spectra

DFT-B3LYP/6-311+G(d,p) level of theory:

Permanent electric dipole moment (D)	-H	-CCH	-CCCCH
9- <i>R</i> -anthracene	0	0.63	1.35
9- <i>R</i> -phenanthrene	0.015	0.87	1.46
1- <i>R</i> -pyrene	0	0.95	1.80

Summary and outlook

- <u>New</u>: low temperature matrix-isolated UV absorption spectra of ethynyland butadiynyl-substituted PAHs
- Longer chain \rightarrow greater redshift of the electronic transitions
 - \rightarrow broader transitions at short wavelengths
 - → stronger transitions at long wavelengths
 - → greater permanent electric dipole moment (theory)
- Jet-cooled spectra (challenging): band positions and widths
- Theoretical studies of the electronic states
- Measurements with other side groups of relevance: with N, O, ...; with larger PAH moities
- Searches in observational spectra