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From prestellar core to protostellar core

dense core compressional heating 

> radiative cooling
protostellar core
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1D radiation hydrodynamics

Masunaga & Inutsuka (2000)

n~104cm-3
T~10K
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From prestellar core to protostellar core
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Low temperature: T < 20K

Increasing density

-Molecules freeze-out on grains

-hydrogenation on grain surface
e.g. CO  CH3OH

grain/ice surface

Gas-phase reactions of

sublimates

20K < T< 100K

- Grain-surface reactions

of heavy species

grain/ice surface

dense core compressional heating 

> radiative cooling
protostellar core

Chemical processes in star forming cores

Garrod & Herbst (2006)

van Dishoeck & Herbst (2009)



Chemistry is continuous and does not reach equilibrium

 Hydrodynamical-chemical models 

1D radiation hydrodynamics

From prestellar to ptotostellar core

(Masunaga & Inutsuka 2000)

Gas & grain-surface chemistry 
(Garrod & Herbst 2006)

in infalling fluid parcels

+

Evolution of gas and ice  (Aikawa et al. 2008)

dense core compressional heating 

> radiative cooling
protostellar core

Lee et al. (2004)

Visser’s talk

Hydrodynamical-chemical models



Lagrangian view

Density & temperature in a fluid parcel falling from 104AU to 2.5AU

# density & temperature rise accelerates at the latest moment



# Duration of  (Luke) warm chemistry  ~  rwarm/vfree-fall

-1/2

Hfallfree nt 

t (final)



Distribution of Molecules in Protostellar Core
~ 1 x 105yr after 2nd collapse

- Abundance jump at sublimation radii

-Dominant ion vary with rising temperature
HCO+

 HCO2
+
 NH4

+

10 100 100001000
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Distribution of Molecules in Protostellar Core
~ 1 x 105yr after 2nd collapse

- Abundance jump at sublimation radii

-Dominant ion vary with rising temperature
HCO+

 HCO2
+
 NH4

+

-Hot Corino species
CH3OH & H2CO ice can form in ambient cloud
CH3CHO, HCOOH gas/ice are abundant at T > 40K

-Carbon Chains
Abundant inside CH4 sublimation radius
(Warm Carbon Chain Chemistry: Sakai et al. 2008

see also Hassel & Herbst 2008)

10 100 100001000

Aikawa et al. (2008)



D/H ratio

# D/H in protostellar core ~ several %
- formation in low temperature era … neutral species survive > 104yr

- inherit high D/H of ingredients

- very high DCOOH/HCOOH
OH + D  OD + H+ 810K

OD + H2CO  DCOOH + H 

Aikawa et al. in prep



Discussion 1: Hot Corino vs WCCC
# Both Hot Corino & WCCC are in the model

# In observations 

- carbon chains are not abundant in hot corinos

- hot corino species are not abundnt in WCCC 
fast collapse  CH4-rich ice WCCC

slow collapse  CH3OH-rich ice  Hot Corino
(Sakai et al. 2009)

Slow collapse from equilibrium Fast collapse  (Egrav > Ethermal)

Aikawa et al. (2005)

CH3OHice

CH4ice
CH3OHice

CH4ice



Discussion 2: abundance of Hot Corino species

Our model do not produce enough hot corino species?

# improve grain-surface chemistry model 

stochastic model, layered ice mantle…Vasyunin’s talk

# improve  physical model

6 (-6)
7 (-7)

5 (-10)

5 (-9)

2 (-11)

5 (-9)



Star Formation is NOT spherical 

- Flatted “disk” appears inside the centrifugal radius 

GM

r
r

2

init

2

cent

)( 
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r ~ 0.1pc

 ~ 10-14 s-1 
 rcent ~ 100AU

- Spherical symmetry and free-fall are good approximation in envelope

- Fluid parcels could stay in the “disk” for t > t free-fall

Figure from

Tomida (Master thesis)



In the “disk”…

- CH3OH and CH3CHO decrease in ~105yr

… time scale vary among species

- CH3OCH3 are formed… high D/H ratio

T=260K  (nH=4x108cm-3)

T=40K  (nH=4x108cm-3 )

- HCOOCH3 are formed on the grain surface



Discussion 2: abundance of Hot Corino species

Our model do not produce enough hot corino species?

# improve grain-surface chemistry model 

stochastic model, layered ice mantle…Vasyunin’s talk

# improve  physical model

6 (-6)
7 (-7)
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Chemistry in the 3-D Model of 

the First Core Formation

First Core

- First hydrostatic core of H2

- Fragment to form binary?

- Outflow

- Evolves to the protoplanetary disk     (Machida & Matsumoto 2010)

Furuya et al. poster



Model

Hydrodynamic model
- 3D nested grid: 323 x 16 level

(Matsumoto & Hanawa 2003; Tomida et al 2011)

- from ~0.1 pc to 0.08 AU

- flow particle trajectories at each time step

 temporal variation of physical conditions in the particles

Chemical model
T< 100 K: Garrod & Herbst (2006)

T > 100K: Harada et al. (2010)

collisional dissociations 

3-body reactions

grain charge balance: Umebayashi (1980)

Willacy et al. (1998) +a

Ziegler & Yorke (1997)



Edge-on view

(RHD model) Face-on view

(Barotropic model)

160AU

40AU

CH3OH

CH3OH

Result

- Abundance is determined mainly by sublimation & local temperature

ice region

sublimated region

central region (R<1AU) … destruction of CH3OH



Summary
10K                      several 10 K                              >100K

freeze-out &

hydrogenation
Hot corino species on grains

Warm Carbon Chain Chemistry

Gas-phase reactions

of sublimates

tcollapse~106yr Rwarm/vff ~ 104yr Rhot/vff ~ 102yr

longer in the “disk”

- Some Hot corino species are more abundant in the “disk” ?
 need spatial resolution

-high D/H ratios ... originates in cold phase

 high D/H does not necessarily mean low-T formation of the molecule itself

- Chemistry in 3D model of the first core
abundances mostly determined by  sublimation & local temperature

 due to the mass accretion & short lifetime of the first core





intro

Star formation



with ALMA’s high spatial resolution

- Derive molecular abundance without beam dilution

- Spatial distribution

 formation mechanism: gas-phase or grain surface ?
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Matsumoto & Tomisaka (2004)

- Outflow : Nomura (Poster J3)

- forming disk
sublimation of  H2O ice by accretion shock

>90% at r < 30AU   re-condense
(Lunine et al 1991; Visser et al 2009)
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launch @ T< 1000K  
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Vp~130km/s Vp<30km/s



- ionization degree of HCO+ layer: [e] ~ 10-7

TW Hya Qi et al. (2008)

- DCO+/HCO+ ratio increases outwards

0.01 at < 30 AU to 0.1at > 70AU

DCO+: Deuterium Chemistry

- Upper limit to H2D
+:  1.7 x 1012cm-2



Chemical Processes in Cloud Cores

Gas-phase reactions

- Ion-molecule reactions
- Neutral-Neutral reactions
- Photolysis etc…

Grain-surface reactions
- Hydrogenation: A +H AH
- Reaction among 

heavy-element species

- Cosmic-ray ionization

cf. AB + C A + BC

AB + C ABC
Concentration of 

heavy-element species

- non-thermal 
cosmic-ray
UV
reaction heat

Adsorption

Desorption
- thermal



Chemical Processes in Cloud Cores

prestellar core (low-mass)

protostellar core

Gas-phase reactions

Adsorption

Desorption

- Ion-molecule reactions
- Neutral-Neutral reactions
- Photolysis etc…

- thermal
- non-thermal 

cosmic-ray
UV
reaction heat

Grain-surface reactions
- Hydrogenation: A +H AH
- Reaction among 

heavy-element species

- Cosmic-ray ionization

cf. AB + C A + BC

AB + C ABC
Concentration of 

heavy-element species



Chemical Processes in Cloud Cores

prestellar core (low-mass)

protostellar core

Gas-phase reactions

Adsorption

Desorption

- Ion-molecule reactions
- Neutral-Neutral reactions
- Photolysis etc…

- thermal
- non-thermal 

cosmic-ray
UV
reaction heat

Grain-surface reactions
- Hydrogenation
- Reaction among 

heavy-element species

- Cosmic-ray ionization

Reaction among sublimates



Variation among Cores

L1544

Chemical & Dynamical Evolution?

No infall Infall Infall

Chemical evolutionLow D/H ratio                        Low D/H ratio                      High D/H ratio

No depletion                           Small depletion?                   Significant depletion

L1521B

10000 AU

L492

10000 AU

(Aikawa et al. 2001, Tafalla & Santiago 2004 , Hirota & Yamamoto 2006, Keto & Caselli 2008)

CCS

Thermally  Subcritical/Supercritical  ?

(fast)    Accumulation/collapse speed?    (slow)



From prestellar core to protostellar core
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First Core

birth of protostar

birth of protostar

t ~105yr
after protostar

radius [AU] radius [AU]

protostellar core

cold prestellar core

prestellar core

1D radiation-hydrodynamic model   (Masunaga & Inutsuka 2000)

Gravitational collapse  density & temperature increase

T=20K: CO sublimation

T~100K:  large organics

Resolution of 10 AU  CO towards the first core

large organics towards new-born protostar



D/H

radius [AU]

Tafalla e al (2002)
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C- species … depleted at core center

tfreeze-out ~  106 (104 cm-3/nH) yr

tcollapse ~ 106 (104 cm-3/nH) 1/2yr

tC CO ~  several  105 yr   (@104cm-3)

tN N2 ~  106 yr    (@104cm-3)     slow !

- Chemical Fractionation

N- species… constant or centrally-peaked

- Deuterium Enrichment
Exothermic exchange reaction

H3
+ + HD  H2D

+ + H2 + △E1

CO)(e)(

HD)(

)H(

)DH(
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Enhancement by CO depletion

High D/H ratio of H3
+ and H atoms 

 D/H enrichment of other species

YA et al (2005)



D/H ratios upon heating
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- H2D
+ decreases rapidly when T > 20K

(so do DCO+ and N2D
+)

- D/H ratio is “diluted” as ice sublimates

(NH3, CH4 and carbon chains)
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- H2D
+ decreases rapidly when T > 20K

(so do DCO+ and N2D
+)

- D/H ratio is “diluted” as ice sublimates

(NH3, CH4 and carbon chains)

- high D/H ratio in CH3OH ice due to

CH3OH + D  CH2DOH + H

(Nagaoka et al 2005)

 gaseous D/H ratio of CH3OH upon heating



D/H ratios upon heating
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- D/H ratio is “diluted” as ice sublimates

(NH3, CH4 and carbon chains)

- high D/H ratio in CH3OH ice due to

CH3OH + D  CH2DOH + H

(Nagaoka et al 2005)

 gaseous D/H ratio of CH3OH upon heating

- Organics formed from CH3OH carry

high D/H ratio







# Deuterium Enrichment at low T
- Exothermic exchange reaction

H3
+ + HD  H2D

+ + H2 + △E1
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- Enhancement by CO depletion

D/H ratio

# D/H in protostellar core ~ several %
- formation in low temperature era … neutral species survive > 104yr

- inherit high D/H from “raw material” … lesson for comet arguments!!

- very high DCOOH/HCOOH

OH + D  OD + H,  OD + H2CO  DCOOH + H 

Hot Corino species Carbon chains



D/H ratio

# D/H in protostellar core ~ several %
- formation in low temperature era … neutral species survive > 104yr

- inherit high D/H of ingredients

- very high DCOOH/HCOOH

OH + D  OD + H+ 810K

OD + H2CO  DCOOH + H 

Aikawa et al. in prep



In the “disk”…

- hot corino species decrease in ~105yr

… time scale vary among species

- CH3OCH3 are formed

… high D/H ratio

-CH4 and WCCC species survive ~ several 105yr
(see also Hassel & Herbst 2008)

T=260K,  nH=4x108cm-3



- hot corino species decrease in ~105yr

… time scale vary among species

- CH3OCH3 are formed

… high D/H ratio

-CH4 and WCCC species survive ~ several 105yr
(see also Hassel & Herbst 2008)

T=260K,  nH=4x108cm-3

T=40K,  nH=4x108cm-3

- HCOOCH3 are formed on the grain surface

- Conversion of CO  CO2

CH4 C2H6

 sink effect

In the “disk”…


