# Hydrodynamical-chemical models from prestellar cores to protostellar cores

### Yuri Aikawa (Kobe University)

Collaborators:

Kenji Furuya (Kobe Univ), Valentine Wakelam, Frank Hersant (Bordeaux) Tomoaki Matsumoto (Housei Univ), Koji Tomisaka, Kengo Tomida (NAOJ), Robin Garrod (Cornel), Eric Herbst (OSU)







### **Chemical processes in star forming cores**







Garrod & Herbst (2006) van Dishoeck & Herbst (2009)

### **Hydrodynamical-chemical models**



Chemistry is continuous and does not reach equilibrium → Hydrodynamical-chemical models

1D radiation hydrodynamics From prestellar to ptotostellar core (Masunaga & Inutsuka 2000) Gas & grain-surface chemistry (Garrod & Herbst 2006) in infalling fluid parcels

→Evolution of gas and ice (Aikawa et al. 2008)

+

Lee et al. (2004) Visser's talk

### Lagrangian view

Density & temperature in a fluid parcel falling from 10<sup>4</sup>AU to 2.5AU



# density & temperature rise accelerates at the latest moment  $\leftarrow t_{\rm free-fall} \propto n_{\rm H}^{-1/2}$ 

# Duration of (Luke) warm chemistry ~  $r_{warm}/v_{free-fall}$ 

### **Distribution of Molecules in Protostellar Core**

- Abundance jump at sublimation radii
- -Dominant ion vary with rising temperature  $HCO^+ \rightarrow HCO_2^+ \rightarrow NH_4^+$



### **Distribution of Molecules in Protostellar Core**



### **Distribution of Molecules in Protostellar Core**

n(i)/hH

- Abundance jump at sublimation radii
- -Dominant ion vary with rising temperature  $HCO^+ \rightarrow HCO_2^+ \rightarrow NH_4^+$

-Hot Corino species CH<sub>3</sub>OH & H<sub>2</sub>CO ice can form in ambient cloud CH<sub>3</sub>CHO, HCOOH gas/ice are abundant at  $T > 40K^{H}$ 

-Carbon Chains Abundant inside  $CH_4$  sublimation radius (Warm Carbon Chain Chemistry: Sakai et al. 2008 see also Hassel & Herbst 2008)



### D/H ratio

#### **# D/H in protostellar core ~ several %**

- formation in low temperature era ... neutral species survive >  $10^4$ yr
- inherit high D/H of ingredients
- very high DCOOH/HCOOH

 $OH + D \rightarrow OD + H + 810K$  $OD + H_2CO \rightarrow DCOOH + H$ 



Aikawa et al. in prep

1E-

1E-

1000

### **Discussion 1: Hot Corino vs WCCC**

# Both Hot Corino & WCCC are in the model

# In observations

- carbon chains are not abundant in hot corinos
- hot corino species are *not abundnt* in WCCC  $\int fast collapse \rightarrow CH_4\text{-rich ice} \rightarrow WCCC$   $\int slow collapse \rightarrow CH_3OH\text{-rich ice} \rightarrow Hot Corino$

(Sakai et al. 2009)



### **Discussion 2: abundance of Hot Corino species**

Gas-phase molecular abundances in IRAS 16293-2422 and model results

| Species                    | IRAS 16293-2422                                                     | model   |   |
|----------------------------|---------------------------------------------------------------------|---------|---|
|                            |                                                                     |         |   |
| $H_2CO$                    | 1.0(-7) <sup>b</sup> , 1.1(-7) <sup>c</sup>                         | 6 (-6)  |   |
| CH <sub>3</sub> OH         | $1.0(-7)^{d}$ , $9.4(-8)^{c}$                                       | 7 (-7)  |   |
| HCOOCH <sub>3</sub>        | $2.5-5.5(-7)^{\rm e}$ , $2.6-4.3(-9)^{\rm f}$ , $> 1.2(-8)^{\rm g}$ | 5 (-10) |   |
| HCOOH                      | 6.2(-8) <sup>e</sup> , 2.5(-9) <sup>g</sup>                         | 5 (-9)  |   |
| $\rm CH_3OCH_3$            | 2.4(-7) <sup>e</sup> , 7.6(-8) <sup>c</sup>                         | 2 (-11) |   |
| $\mathrm{CH}_3\mathrm{CN}$ | $1.0(-8)^{e}$ , $7.5(-9)^{h}$                                       | 5 (-9)  | r |

Our model do not produce enough hot corino species?

- *#* improve grain-surface chemistry model
- stochastic model, layered ice mantle...Vasyunin's talk
- # improve physical model

### Star Formation is NOT spherical

- Spherical symmetry and free-fall are good approximation in envelope
- Flatted "disk" appears inside the centrifugal radius

$$r_{\text{cent}} = \frac{(r^2 \omega)_{\text{init}}^2}{GM} \qquad \qquad \begin{array}{c} r \sim 0.1 \text{pc} \\ \omega \sim 10^{-14} \text{ s}^{-1} \end{array} \rightarrow r_{\text{cent}} \sim 100 \text{AU} \end{array}$$

- Fluid parcels could stay in the "disk" for  $t > t_{\text{free-fall}}$ 



### In the "disk"...

**<u>T=40K**</u> ( $n_{\rm H}$ =4x10<sup>8</sup>cm<sup>-3</sup>)

- **HCOOCH**<sub>3</sub> are formed on the grain surface

#### <u>**T=260K** ( $n_{\rm H}$ =4x10<sup>8</sup>cm<sup>-3</sup>)</u>

- CH<sub>3</sub>OH and CH<sub>3</sub>CHO decrease in ~10<sup>5</sup>yr ... time scale vary among species

#### - CH<sub>3</sub>OCH<sub>3</sub> are formed... high D/H ratio







### **Discussion 2: abundance of Hot Corino species**

Gas-phase molecular abundances in IRAS 16293-2422 and model results

| Species                          | IRAS 16293-2422                                                     | model   |   |
|----------------------------------|---------------------------------------------------------------------|---------|---|
|                                  |                                                                     |         |   |
| $H_2CO$                          | 1.0(-7) <sup>b</sup> , 1.1(-7) <sup>c</sup>                         | 6 (-6)  |   |
| $\rm CH_3OH$                     | $1.0(-7)^{d}$ , $9.4(-8)^{c}$                                       | 7 (-7)  |   |
| HCOOCH <sub>3</sub>              | $2.5-5.5(-7)^{\rm e}$ , $2.6-4.3(-9)^{\rm f}$ , $> 1.2(-8)^{\rm g}$ | 5 (-10) |   |
| HCOOH                            | 6.2(-8) <sup>e</sup> , 2.5(-9) <sup>g</sup>                         | 5 (-9)  |   |
| CH <sub>3</sub> OCH <sub>3</sub> | 2.4(-7)°, 7.6(-8)°                                                  | 2 (-11) |   |
| $\rm CH_3 CN$                    | $1.0(-8)^{\rm e}$ , $7.5(-9)^{\rm h}$                               | 5 (-9)  | ŕ |

Our model do not produce enough hot corino species?

- # improve grain-surface chemistry model
  stochastic model, layered ice mantle...Vasyunin's talk
- # improve physical model

## Chemistry in the 3-D Model of the First Core Formation

Furuya et al. poster

First Core

- First hydrostatic core of  $H_2$
- Fragment to form binary?
- Outflow

- Evolves to the protoplanetary disk (Machida & Matsumoto 2010)



### Model

### Hydrodynamic model

- 3D nested grid: 32<sup>3</sup> x 16 level (Matsumoto & Hanawa 2003; Tomida et al 2011)
- from ~0.1 pc to 0.08 AU
- flow particle trajectories at each time step
  - $\rightarrow$  temporal variation of physical conditions in the particles

1000

100

hot core

warm up

t<sub>final</sub> - t<sub>core</sub> [year]

10<sup>1</sup>

cold phase

emperature [K]

#### Chemical model

- T< 100 K: Garrod & Herbst (2006)
- T > 100K: Harada et al. (2010)
- $\begin{cases} \text{collisional dissociations} \\ 3\text{-body reactions} \end{cases}$  Willacy et al. (1998) + $\alpha$ 
  - grain charge balance: Umebayashi (1980)





### Result



- Abundance is determined mainly by sublimation & local temperature
  - ice region
  - sublimated region
    - central region (R<1AU) ... destruction of  $CH_3OH$

### **Summary**



Some Hot corino species are more abundant in the "disk" ?
 → need spatial resolution

-high D/H ratios ... originates in cold phase
 → high D/H does not necessarily mean low-T formation of the molecule itself

 Chemistry in 3D model of the first core abundances mostly determined by sublimation & local temperature ← due to the mass accretion & short lifetime of the first core



Figure.3.2 continue.

### with ALMA's high spatial resolution

- Derive molecular abundance without beam dilution
- Spatial distribution

10<sup>-4</sup>

10<sup>-5</sup>

10<sup>-6</sup>

10<sup>-7</sup>

10<sup>-8</sup>

10<sup>-9</sup>

10<sup>-10</sup>

10<sup>-11</sup>

10<sup>-12</sup>

10<sup>-13</sup>

Ή,

X<sub>mol</sub>(t)

- $\rightarrow$  formation mechanism: gas-phase or grain surface ?
  - Outflow : Nomura (Poster J3)

Jaunch @T>3000K region

t [yr]

NH<sub>3</sub>

- forming disk sublimation of  $H_2O$  ice by accretion shock >90% at r < 30AU  $\rightarrow$  re-condense (Lunine et al 1991; Visser et al 2009)

NH

H<sub>2</sub>CO

CHZOH

H<sub>2</sub>CO

**CH<sub>3</sub>OH** 

10<sup>5</sup>

10<sup>-3</sup>

10<sup>-4</sup>

10<sup>-5</sup>

10<sup>-6</sup>

10<sup>-7</sup>

10<sup>-8</sup>

10<sup>-9</sup>

10<sup>-10</sup>

10<sup>-11</sup>

10<sup>-12</sup>

 $10^{2}$ 

10<sup>610<sup>-13</sup></sup>

 $^{\circ}CO$ 

′\_<30km/s

 $10^{4}$ 

[yr]

 $10^{3}$ 



### **DCO+: Deuterium Chemistry**



- DCO+/HCO+ ratio increases outwards 0.01 at < 30 AU to 0.1at > 70AU
- ionization degree of HCO+ layer: [e] ~ 10<sup>-7</sup>  $\frac{n(\text{DCO}^+)}{n(\text{HCO}^+)} = \frac{1}{3} \frac{n(\text{H}_2\text{D}^+)}{n(\text{H}_3^+)} = \frac{1}{3} \frac{k_1 n(\text{HD})}{k_3 n(\text{CO}) + \beta_5 n(e)}.$
- Upper limit to  $H_2D^+$ : 1.7 x  $10^{12}cm^{-2}$

### **Chemical Processes in Cloud Cores**



#### **Gas-phase reactions**

- Cosmic-ray ionization
- Ion-molecule reactions
- Neutral-Neutral reactions
- Photolysis etc...

(cf)  $AB + C \rightarrow A + BC$ 



### **Chemical Processes in Cloud Cores**



#### **Gas-phase reactions**

- Cosmic-ray ionization
- Ion-molecule reactions
- Neutral-Neutral reactions
- Photolysis etc..
- $f AB + C \rightarrow A + BC$





#### Grain-surface reactions - Hydrogenation: A +H → AH

 Reaction among heavy-element species
 AB + C → ABC
 Concentration of heavy-element species





### **Chemical Processes in Cloud Cores**



#### **Gas-phase reactions**

- Cosmic-ray ionization
- Ion-molecule reactions
- Neutral-Neutral reactions
- Photolysis etc...

#### **Reaction among sublimates**





### **Variation among Cores**



(Aikawa et al. 2001, Tafalla & Santiago 2004, Hirota & Yamamoto 2006, Keto & Caselli 2008)

Gravitational collapse  $\rightarrow$  density & temperature increase

T=20K: CO sublimation

T~100K: large organics

#### Resolution of 10 AU $\rightarrow$ CO towards the first core

large organics towards new-born protostar



### <u>D/H</u>

### - Chemical Fractionation

C- species ... depleted at core center  $t_{collapse} \sim 10^6 (10^4 \text{ cm}^{-3}/n_H)^{1/2} \text{yr}$  $t_{freeze-out} \sim 10^6 (10^4 \text{ cm}^{-3}/n_H) \text{ yr}$ 

N- species... constant or centrally-peaked  $t_{C \rightarrow CO} \sim \text{several } 10^5 \text{ yr } (@10^4 \text{cm}^{-3})$  $t_{N \rightarrow N2} \sim 10^6 \text{ yr } (@10^4 \text{cm}^{-3}) \leftarrow \text{slow }!$ 

#### - Deuterium Enrichment

Exothermic exchange reaction  $H_3^+ + HD \rightarrow H_2D^+ + H_2 + \Delta E_1$ Enhancement by CO depletion

 $\frac{n(H_2D^+)}{n(H_3^+)} = \frac{k_1n(HD)}{k_2n(e) + k_3n(eQ)}$ 

High D/H ratio of  $H_3^+$  and H atoms  $\rightarrow$  D/H enrichment of other species





- $H_2D^+$  decreases rapidly when T > 20K (so do DCO<sup>+</sup> and  $N_2D^+$ )
- D/H ratio is "diluted" as ice sublimates (NH<sub>3</sub>, CH<sub>4</sub> and carbon chains)



- $H_2D^+$  decreases rapidly when T > 20K (so do DCO<sup>+</sup> and  $N_2D^+$ )
- D/H ratio is "diluted" as ice sublimates (NH<sub>3</sub>, CH<sub>4</sub> and carbon chains)



-  $H_2D^+$  decreases rapidly when T > 20K (so do DCO<sup>+</sup> and  $N_2D^+$ )

- D/H ratio is "diluted" as ice sublimates (NH<sub>3</sub>, CH<sub>4</sub> and carbon chains)
- high D/H ratio in  $CH_3OH$  ice due to  $CH_3OH + D \rightarrow CH_2DOH + H$

(Nagaoka et al 2005)

 $\rightarrow$  gaseous D/H ratio of CH<sub>3</sub>OH upon heating



- $H_2D^+$  decreases rapidly when T > 20K (so do DCO<sup>+</sup> and  $N_2D^+$ )
- D/H ratio is "diluted" as ice sublimates (NH<sub>3</sub>, CH<sub>4</sub> and carbon chains)
- high D/H ratio in  $CH_3OH$  ice due to  $CH_3OH + D \rightarrow CH_2DOH + H$ (Nagaoka et al 2005)

→ gaseous D/H ratio of  $CH_3OH$  upon heating

- Organics formed from CH<sub>3</sub>OH carry high D/H ratio









#### Ζ

### D/H ratio

#### **# Deuterium Enrichment at low T**

- Exothermic exchange reaction  $H_3^+ + HD \rightarrow H_2D^+ + H_2 + \Delta E_1$  - Enhancement by CO depletion  $\frac{n(H_2D^+)}{n(H_3^+)} = \frac{k_1 n(HD)}{k_2 n(e) + k_3 n(CO)}$ 

#### **# D/H in protostellar core ~ several %**

- formation in low temperature era ... neutral species survive >  $10^4$ yr
- inherit high D/H from "raw material" ... lesson for comet arguments!!
- very high DCOOH/HCOOH

 $OH + D \rightarrow OD + H$ ,  $OD + H_2CO \rightarrow DCOOH + H$ 



### D/H ratio

#### **# D/H in protostellar core ~ several %**

- formation in low temperature era ... neutral species survive >  $10^4$ yr
- inherit high D/H of ingredients
- very high DCOOH/HCOOH
  - $OH + D \rightarrow OD + H + 810K$  $OD + H_2CO \rightarrow DCOOH + H$



1000

100

Aikawa et al. in prep



### In the "disk"...

T=260K,  $n_{\rm H}$ =4x10<sup>8</sup>cm<sup>-3</sup>

hot corino species decrease in ~10<sup>5</sup>yr
 ... time scale vary among species

- CH<sub>3</sub>OCH<sub>3</sub> are formed ... high D/H ratio
- -CH<sub>4</sub> and WCCC species survive ~ several 10<sup>5</sup>yr (see also Hassel & Herbst 2008)

T=40K,  $n_{\rm H}$ =4x10<sup>8</sup>cm<sup>-3</sup>

- HCOOCH<sub>3</sub> are formed on the grain surface
- Conversion of CO  $\rightarrow$  CO<sub>2</sub> CH<sub>4</sub>  $\rightarrow$  C<sub>2</sub>H<sub>6</sub>  $\leftarrow$  sink effect

