# The Chemistry of Exoplanetary Atmospheres

The Effects of Non-equilibrium Chemistry



## Outline

### Introduction

② Exoplanetary atmospheres

### ② Results

- Zero-metallicity
  C, N, O chemistry
- O Initial conditions
- ② Further work
- ② Summary



## **Transiting Exoplanets**



Figure from Winn 2009, in Exoplanets, ed. S. Seager

## 'Hot Jupiters'

#### Ø Most transiting planets are 'Hot Jupiters'

- $\odot$  Between < 1 and 10 M<sub>i</sub> and < 1 and a few R<sub>i</sub>
- Orbital radius of between 0.01 and 0.1 AU
- Orbital period on the order of 1 day
- Heavily irradiated by parent star
- Tidally locked with a constant night-side and dayside
- ② Low Bond albedo i.e. reflectivity

#### ② Atmospheric chemical composition

- Likely molecular hydrogen and helium dominated
- Trace elements include C, N, O, S, metals
- Upper day-side atmosphere is heavily irradiated
- Heat redistribution from day-side to night-side
- O Atmospheric dynamics?

#### ② Formation mechanisms

- ② Core accretion
- ② Disk fragmentation
- 2 Planetary migration

#### ② Mass-loss from atmosphere

- ② Evaporation
- ② Roche-lobe overflow



Figure from Fortney et al. 2008, ApJ, 678, 1419

#### IAU 280 'The Molecular Universe'

## **Molecules in Exoplanet Atmospheres**

### **Transmission Spectrum**



Figure from Fortney et al. 2010, ApJ, 709, 1396

### **Emission Spectrum**



#### Figure from Swain et al. 2009, ApJ, 690, L114

Current forward models struggle to reproduce observed spectra.

Molecules identified using backwards/fitting models. Many free parameters!

Non-equilibrium chemistry, non-LTE effects, temperature inversion?

## **Building a Model Atmosphere**

### **Ommon assumptions**

- ② Plane-parallel geometry
- ② Hydrostatic equilibrium
- ② Radiative equilibrium
- ② Chemical equilibrium
- ② Local thermodynamic equilibrium

### ② Model Ingredients

- ② Planetary system parameters
- ② Chemical elemental composition
- ② Absorption cross section data
- ② Reaction rate coefficients

#### **Complications**

- ② Convection
- ② Dynamics (e.g. winds)
- ② Mixing/diffusion
- ② Incomplete opacity line lists
- ② Photochemistry
- ② Clouds and dust



## Exoplanet Atmosphere Model

### Physics and chemistry of the atmosphere are intrinsically linked! Self-consistent solution is required!



7

## **Results: Zero Metallicity**



- ② Model reproduces expected atmospheric structure
- Photochemistry and ion-molecule chemistry lead to chemical stratification and an ionised layer at high altitudes (similar to PDR/PPD)
- O Significant abundances of H<sup>-</sup> and H<sub>3</sub><sup>+</sup> both absorb at IR wavelengths!

## Results: C, N, O Chemistry

- HD 189733 b
  - Ø M<sub>p</sub> = 1.13 M<sub>j</sub>
  - $\bigcirc$  R<sub>p</sub> = 1.14 R<sub>J</sub>
  - ② T<sub>eff</sub> = 4980 K (K1 − K2)
  - ② a = 0.031 AU
  - D = 19.3 pc
- Solar metallicity (Anders & Grevesse, 1989)
  - C = 2.455 x 10<sup>-4</sup>
  - N = 6.026 x 10<sup>-5</sup>
  - ② 0 = 4.571 x 10<sup>-4</sup>







## **Results: Initial Molecular Abundances**

Use Link between protoplanetary disk chemical structure and planetary atmosphere composition?

### ② Gas-giant planet formation

- Coagulation of icy dust grains in outer disk --->protoplanet
- ② Accretion of remnant disk material to form gaseous envelope i.e. core accretion
- ② Planet migration from outer disk to inner disk
- Contamination of atmosphere?

# ② Generate initial abundances from a protoplanetary disk model?

## **Results: Initial Molecular Abundances**



Crosses = gas-phase; Squares = grain-surface Walsh et al. 2010, 2011

### ② Planet formation site

### **Protoplanetary disk model**

- **Output** Gas-phase chemistry
- ② Gas-grain interactions
- **③** Grain-surface chemistry
- Oxygen-rich low-metal initial elemental abundances

## **Results: Initial Molecular Abundances**



Gas-phase initial abundances Solid lines = 5 AU; Dashed lines = 10 AU

- ② Major chemical reprocessing in the atmosphere
- Only minor differences in final chemical structure using disk gasphase initial molecular abundances



Grain-surface initial abundances Solid lines = 5 AU; Dashed lines = 10 AU

- ② Larger differences when using grainsurface initial molecular abundances!
- ④ H<sub>2</sub>O becomes dominant molecule
- Order of magnitude differences in  $CO_2$ ,  $NH_3$  and  $CO/CH_4$  at 5 and 10 AU

## **Further Work**

## Immediate

- Investigate chemical feedback on atmospheric physical structure
- Addition of trace elements e.g. Na, Mg, Fe, Ti, V
- <sup>(2)</sup> Further exploration of initial conditions
- ② Generate synthetic emission and transmission spectra to compare with current and future observations

## Use Future

- ② Mixing/diffusion
- Cloud formation, absorption and scattering
- Solid particles, aerosols and haze
- Super-Neptunes, Saturns and Earths
- Predictions for future missions e.g. JWST

## Summary

### Self-consistent model of an irradiated exoplanetary atmosphere with nonequilibrium chemistry

### **2** Zero-metallicity chemistry

- ② Chemical stratification in the atmosphere due to photo- and ion-molecule chemistry
- ② Absorption at IR wavelengths by  $H^-$  and  $H_3^+$ ?
- ② Impact on physical structure?

### **Carbon, oxygen, nitrogen chemistry**

- ② Solar metallicity
- ② Chemical stratification due to photo- and ion-molecule chemistry
- ② Atomic and molecular regions determined by H/H<sub>2</sub> boundary
- ② Dominant molecules in densest region: CO, CH<sub>4</sub>, H<sub>2</sub>O, NH<sub>3</sub>
- ② Molecular absorption feedback?
- ② Varying metallicities?

### **②** Initial molecular abundances

- ② Major chemical reprocessing in atmosphere
- ② Minor differences in final chemical structure using gas-phase initial abundances
- ② Larger differences in relative molecular abundances when using grain-surface/ice abundances
- ② Implications on planetary formation theory?