Fullerenes in circumstellar and interstellar environments

Jan Cami/

Jeronimo Bernard-Salas, ElsPeeters, Sarah Malek

University of Western Ontario SETI Institute

Presence of C₆₀ and C₇₀ in space firmly established Diverse sources

Unexpected: Neutral and cool

Unclear: Formation state (solid/gas) excitation mechanism

Cami, Bernard-Salas, Peeters, Malek, 2010, Science 329, 1180.

The discovery of C_{60} and C_{70}

No, of carbon atoms per cluster

Fig. 1 A football (in the United States, a soccerball) on Texas grass. The C60 molecule featured in this letter is suggested to have the truncated icosahedral structure formed replacing each vertex on the seams of such a ball by a carbon atom.

by **Graphite vaporization in H-poor**

atmosphere, using He as buffer gas.

Increasing He pressure -> increasing collisions -> most stable species survive: C₆₀ and C₇₀.

Widespread and abundant in space?

NATURE

Astro Searches

- Electronic bands of *neutral* C₆₀ in interstellar medium: not found (Herbig, 2000), but not surprising.
- Electronic bands of C₆₀⁺: promising case , awaiting laboratory confirmation (Foing&Ehrenfreund, 1994)

C₆₀& C₇₀ vibrational modes

- Neutral C₆₀: 174 fundamental vibrational modes, but only 4 are IR active: 7.0, 8.5, 17.4, 18.9 μm.
- Neutral C₇₀: 204 fundamental vibrational modes;
 32 are IR active.

Note: cation spectra quite different.

Menéndez& Page

IR Bands: observational studies

- Dedicated IR searches: no C₆₀ was detected.
 (Clayton et al., 1995; Moutou et al., 1999).
- C₆₀ suggested as a good candidate to explain features at 17.4 and 18.9 μm in Reflection Nebula NGC 7023 (Sellgren et al., 2007).

Spitzer-IRS observations of Tc 1

Observed Mar 21, 2005 with IRS in both Low-Resolution and High-Resolution modules.

Buckyballs In A Young Planetary Nebula NASA / JPL-Caltech / J. Cami (Univ. of Western Ontario/SETI Institute) Spitzer Space Telescope • IRS

ssc2010-06a

Laboratory data: wavelengths & widths depend on T!

The Bottom Line

All measurable quantities (wavelengths, widths and strengths) are consistent with laboratory experiments carried out at temperatures comparable to what we derive.

- Central star has a temperature of 30,000 K; thus average photon energies in the range 6—10 eV.
 Ionization potential is 7.6 eV; would expect C₆₀
- cation, not neutral C₆₀!
- Expected excitation: single-photon heating followed by fluorescent cooling in the IR.
- In that case, the 17.4 / 18.9 intensity ratio should be fairly insensitive to the photon energies.

Cooling Cascade

Band Ratios

	3 eV	5 eV	10 eV	15 eV	Tc 1
Ι _{7.0} /Ι _{18.9}	0.35	0.55	0.91	1.16	[Ar II] contam.
Ι _{8.5} /Ι _{18.9}	0.29	0.40	0.58	0.58	0.27
Ι _{17.4} /Ι _{18.9}	0.27	0.27	0.28	0.28	0.59

 Observed band ratios in Tc 1 are not compatible with fluorescent cooling; band ratios for 17.4 / 18.9 in different objects quite variable!

Excitation diagram

More PNe with fullerenes (and some have PAHs). Including one in SMC!

SMC 16: 326 K (?)

M1-20: 425 K (?) M1-12: 546 K (?) K3-54: 681 K (?)

> Garcia-Hernandez et al., 2010 Cami et al., 2011

Other sources

 PAHs and C₆₀ in Proto-PN IRAS 01005+7910 (Zhang & Kwok, 2011).

R CorBor stars

Only show up in the two most H-rich R CorBor stars.

(Garcia-Hernandez et al., 2011)

O-rich binary post-AGB stars (Gielen et al., 2011).

C₆₀ in ISM

(Sellgren et al., 2010)

Orion Bar

RNe

(Rubin et al., 2011)

Fullerene Formation

- Observations suggest that fullerenes form in the circumstellar environments of evolved stars.
- At "moderate" temperatures (as expected for most circumstellar environments) and high enough densities, fullerenes self-assemble from carbon clusters....
- ...but only in H-deficient gas! (de Vries et al., 1993; Wang et al. 1995)
- Process is efficient: ≈1% of C is turned into C₆₀ comparable to PNe abundance estimates.

Fullerene Formation (2)

On first sight, appealing to explain Tc 1:

- strong C₆₀
- no PAHs
- no other clear H-containing molecules.
- However, H is present at large in the nebula, and also in the photosphere!

 Why is there no trace of even the simplest Hcontaining carbonaceous molecules??

Fullerene Formation (3)

- Alternative: photo-processing of HAC yields simultaneous production of PAHs and fullerenes (e.g. Scott & Duley 1996).
- On first sight, appealing to explain those PNe that show both PAHs and C₆₀.
- Problems:
 - far less efficient (dominant species have 40 atoms)
 - produces many more small molecules and molecular fragments which are not seen in these objects....

Fullerene Formation (4)

- Garcia-Hernandez (2010): most likely HAC photoprocessing: simultaneous appearance of PAHs and C₆₀ clearly indicates that PAHs and fullerenes are co-existing....
- ...but there is strong observational evidence at least in some sources that PAHs and C6o are in fact <u>not</u> co-located!

C₆₀ in ISM (RNe)

Sellgren et al., 2010

Fullerene Formation (6)

- Fullerenes can also form efficiently in H-rich environments at T > 3500 K (Jäger et al., 2009).
- Key is (once more) high density.

 Is this the route? Or is there yet another mechanism, e.g. to make fullerenes from PAHs?

Future aspects

• What to do once you have made fullerenes?

 Make other stuff – could be important e.g. for the DIBs!

Bohme, 2009

Hydrogenated fullerenes?

Cataldo& Iglesias-Groth, 2009.

Surprises & Issues

Fullerenes are neutral.

Ionization potential of C₆₀ is 7.6 eV; T_{eff} of Tc 1 is 30,000 K.

Fullerenes are 'cool'.

Symmetric band profiles.

LTE intensities.

Stochastic heating: would expect stronger 7 & 8.5 µm. No contributions from hot bands? No anharmonicities? Rare observation in gas phase species.

Solid state C₆₀?

Solid C₆₀, same vibrational modes!

Kraetschmer 1990

Presence of C₆₀ and C₇₀ in space firmly established Diverse sources

Unexpected: Neutral and cool

Unclear: Formation state (solid/gas) excitation mechanism

Cami, Bernard-Salas, Peeters, Malek, 2010, Science 329, 1180.