Modelling the gas and the dust of protoplanetary discs in the Herschel-GASP sample

W.-F. Thi¹ and The GASPS team²

¹ UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d'Astrophysique (IPAG) UMR 5274, Grenoble, F-38041, France

² J. M. Alacid, S. Andrews, D.R. Ardila, G. Aresu, J.-C. Augereau, D. Barrado, S. Brittain, D. R. Ciardi, W. Danchi, J. Donaldson, I. de Gregorio-Monsalvo, W. R. F. Dent, G. Duchêne, C. Eiroa, D. Fedele, C. A. Grady, A. Heras, C. D. Howard, N. Huelamo, I. Kamp, A. Krivov, J. Lebreton, R. Liseau, C. Martin-Zaïdi, G. Mathews, G. Meeus, F. Ménard, I. Mendigutía, B. Montesinos, A. Mora, M. Morales-Calderon, H. Nomura, E. Pantin, I. Pascucci, N. Phillips, C. Pinte, L. Podio, D. R. Poelman, S. Ramsay, B. Riaz, K. Rice, P. Riviere-Marichalar, A. Roberge, G. Sandell, E. Solano, I. Tilling, B. Vandenbussche, H. Walker, G. J. White, J. P. Williams, P. Woitke, G. Wright

> IPAG Institut de Planétologie et d'Astrophysique de Grenoble

GAS in Protoplanetary Systems

Herschel Open time large program P.I. Dent (PASP to be submitted) http://www.laeff.inta.es/projects/herschel/

Aim:

- 1. Trace gas and dust in the planet formation region across an extensive multivariate parameter space.
- 2. Direct measurement of the gas dissipation timescale.
- 3. Study the evolutionary link between protoplanetary and debris discs.
- 4. Investigate the extent of warm water in planet-forming regions of discs.
- 5. Provide an extensive database of disc observations for future observations (ALMA, JWST, ...).

GASPS project will observe nearby clusters (~250 pre-main-sequence stars) in the age range 1-30 Myr disc masse range of $10^{-5} - 10^{-2} M_{sun}$

- 1st phase[CII] 157 micron, [OI] 63 micron, water 78 micron + photometry
- 2nd phase: [OI] 145 micron + extra water lines

First results: [OI] 63 micron, [CII] not detected

TTauri stars: Disc, outflow, and envelope

[OI] 63 micron Line Flux (log[W m⁻²])

The DENT grid: 3D Monte-Carlo radiative transfer code MCFOST + gas code ProDiMo

Grid of 300,000 models: Ist statistical theoretical study of gas and dust in protoplanetary discs (T_{eff} , M_{star} , M_{dust} , M_{gas} , R_{in} , R_{out} ,, flaring index, scale height H₀, a_{min} , a_{max} , settling)

Woitke et al. 2010 MNRAS 405, L26 and Kamp et al. (2011, arXiv 1103.5763K)

ProDiMo: Woitke et al. 2009a, 2009b; Kamp et al. 2009; Thi et al. 2010a, 2011, Aresu et al. 2011 (see poster Aresu et al., Chapparo et al.) MCFOST: Pinte et al. 2006 A&A 459, 797

Disc density structure

Dust and gas temperature

TTauri stars: Disc, outflow, and envelope

[OI] 63 micron Line Flux (log[W m⁻²])

Preliminary statistical qualitative analysis

Influence of the excess UV flux

Different lines probe different 57 disc regions

- Dust modelling (SED + images) to constrain the disk structure and dust properties
 - → geometry, gap 5-20 AU
 → amount of PAHs:
 f_{PAH}=0.03
- Input for gas modelling

 → low UV excess
 → PAH = main gas heating source
 → gas dust ratio ~ 20 50
 - \rightarrow gas dust ratio \approx 20-50
 - Mgas~ (3-6.5)10⁻³ M_{Sun}

RECX15

Recx15: a compact gas-rich disc

- GASPS-survey: 80% observations performed
- [OI] 63 micron is the strongest GASPS-line
- [CII] non-detection may be due to extended emission
- A statistical picture starts to emerge (see poster Meeus et al.)
- The DENT grid of models is valuable to understand the data
- The detailed modelling confirms the dust and gas mass estimates from the grid:
 - variety of gas and dust masses from gas-rich discs (RECX 15 gas-todust>100) to gas-poor discs (TW Hya gas-to-dust<10)
 - we are also modelling the molecular emissions (CH⁺), H₂O (see poster Kamp et al.)
 - other sources modelled individually (papers submitted or in preparation): HD181327 (Lebreton et al.), HD163296 (Tilling et al.), HD141569A(Thi et al.), 49Cet (Roberge et al.), HD135344 (Martin-Zaïdi et al.), GGTau (Duchêne et al.), HD9672 (Meeus et al.), ABAur, 51Oph, FT Tau, IRAS04158+2805 (Pinte et al.), LKCa15, GM Aur, ...

GASPS/ProDiMo-related posters

- Kamp et al. "The disk around TW Hya water and signs of evolution" (see also the talk by Hogerheijde on water in TWHya)
- Meeus et al. "Herschel's view on the gas in Herbig Ae/Be stars"
- Podio et al. "Herschel/PACS observations of young sources in Taurus: the far-infrared counterparts of optical jets"
- Aresu et al."X-rays in protoplanetary disks: their impact on the thermal and chemical structure, a grid of models"
- Chaparro et al. "The role of OH in the chemical evolution of protoplanetary disks"
- Lahuis et al. "Epic changes in the IRS 46 mid-infrared spectrum, an inner disk chemistry study
- Thi et al. poster on CH⁺ in the disc around HD100546

From Atoms to Pebbles: Herschel's view of Star and Planet Formation

A Herschel Meeting on Star and Planet Formation 20-23 March 2012, Grenoble, French Alps Contact: augereau@obs.ujf-grenoble.fr

ailli

111111

(mailing list)

Institutes & Sponsors

Summary of Clusters and associations in GASPS

Group	Distance	Age	Disk fraction	GASPS	Notes
	(pc)	(Myr)	(total)	targets	
Taurus	140	0.3-4	90%	106	Class I-III T Tauri stars
Upper Sco	145	5	20%	44	Class II-III T Tauri stars
η Cha	97	5-9	56%	17	T Tauri and debris disks
ТѠНуа	~ 50	8-10	≥30%	13	T Tauri and debris disks
βΡίς	10-50	10-20	≥ 37%	18	Debris disks
Tuc Hor	40-50	30	≥26%	16	Debris disks
HAeBestars	50-200	~0.5-30	100%	24	

from continuum studies

Dust modelling of HD169142: constraining the disc structure

Parameter	Inner Disc	Outer Disc
r _{in} (AU)	0.1	20
r _{out} (AU)	5	235
surface dens. exp o	-1.0	-1.0
flaring exponent β	1.05	1.00
ref. scale height h_0	0.07 AU @ 1AU	12.5AU @ 100AU
$M_{\rm dust} (M_{\rm o})$	2×10^{-9}	1.5×10^{-4}
<i>f</i> _{PAH}	0	0.03 (3% ISM value)

I. tenuous inner disc

- 2. gap between 5 and 20 AU (sign of a planet?)
- 3. small amount of PAH ($f_{PAH}=1$ means abundance of 3 10⁻⁷)

Modelling the gas in discs with ProDiMo

- 1. 2D dust radiative transfer: grain thermal balance (can also take input from MCFOST or GRaTer)
- 2. 1+1D for the gas cooling using escape probability (checked against 3D Monte-Carlo): atomic and rovibrational cooling lines
- 3. Over 71 gas and solid species (including deuteratred species) steady-state+time-dependent. Xray and UV chemistry
- 4. Hydrostatic equilibirum

Woitke et al. 2009a, 2009b; Kamp et al. 2009; Thi et al. 2010a, 2011 Aresu et al. 2011 (see poster Aresu et al., Chapparo et al.)

RECXI5: compact hot gas only seen in [OI] and H_2

		10 ⁻¹⁸ V	V m ⁻²	
line	λ[μm]	observed	model	
$[OI]^{3}P_{1} \rightarrow {}^{3}P_{2}$	63.18	30.5 ± 3.2	34.5	[OI] detected in the optical and Far-
$[OI]^{3}P_{0} \rightarrow {}^{3}P_{1}$	145.52	< 6.0	2.6	
$[OI]^{1}D_{2} \rightarrow {}^{3}P_{2} (HVC)$	0.6300	73 ± 25	—	
$[OI]^{1}D_{2} \rightarrow {}^{3}P_{2}(LVC)$	0.6300	65 ± 25	69.6	atomic jet emission
$[CII]^{2}P_{3/2} \rightarrow {}^{2}P_{1/2}$	157.74	< 9.0	0.11	disc emission
$COJ = 3 \rightarrow 2$	866.96	< 0.05	0.014	
COJ =29→28	90.16	< 9.6	4.9	CO J=3-2 non-detection by
$COJ = 33 \rightarrow 32$	79.36	< 24	3.3	Apex
$COJ = 36 \rightarrow 35$	72.84	< 8.0	2.6	
$o-H_2 v=1 \rightarrow 0 S(1)$	2.122	2.5 ± 0.1	2.4	
$o-H_2O 2_{21} \rightarrow 2_{12}$	180.49	< 5.2	1.1	
$o-H_2O_{12} \rightarrow 1_{01}$	179.53	< 5.0	1.4	
$0-H_2O_{32} \rightarrow 3_{12}$	78.74	< 30	11.1	
$p-H_2O_{322} \rightarrow 2_{11}$	89.99	< 9.6		

Caution: not unique solution

H₂ modelling

- H₂ formation: Jura, Cazaux & Tielens
- H₂ formation pumping
- H₂ fluorescence and self-shielding: simple analytical formula or I+ID NLTE radiative transfer
- most recent H₂ collision rates with H⁺, e, H, He, H₂

Gas modelling HD169142 with ProDiMo

Recx15: a compact gas-rich disc

H₂ modelled by ProDiMo

H₂ levels: rovibrational+ electronic

CH⁺ in HD100546: Herschel-PACS

Thi et al. 2011 A&A 530, L2

continuum subtracted archival data (Sturm et al. 2010 A&A 518 L129)