

Onsala Space Observatory

Nordic ARC node, Sweden

& A. Beelen, M. Guélin, S. Aalto, J. H. Black, F. Combes, S. J. Curran, P. Theule, S. Longmore

Outline

- Extragalactic radio-mm molecular absorbers
- ATCA 7 mm spectral survey toward PKS1830-211
 - Deep molecular inventory in a z=0.89 galaxy
- Molecular absorbers as cosmological probes
 - Isotopic ratios
 - CMB temperature
 - Variations of fundamental constants
- Time variations
- Perspectives

Radio quasar = Continuum background source

Molecular absorption lines

Intervening (or host) galaxy With <u>molecular gas</u> on the los

Happy astronomer

Extragalactic radio-mm molecular absorbers

Source	z(abs)	Background continuum flux (Jy)	N(H ₂) (cm ⁻²)	Molecules detected
Cen A	0.002	6	2 x 10 ²⁰	CO, OH, NH ₃ , CN, HCO ⁺ , HCN, N ₂ H ⁺ , CS, H ₂ CO, C ₃ H ₂
3C293	0.045		2 x 10 ¹⁹	CO, HCO+, HCN
4C31.04	0.060		1 x 10 ¹⁹	CO, HCO ⁺ , HCN
PKS 1413+135	0.247	0.5	5 x 10 ²⁰	CO, CN, HCO ⁺ , HCN, HNC
B 1504+377	0.673	0.4	5 x 10 ²⁰	CO, HCO ⁺ , HCN, HNC
B 0218+357	0.685	0.5 lensed	4 x 10 ²¹	CO, NH ₃ , H ₂ 0, HCO ⁺ , HCN, HNC, CS, H ₂ S, H ₂ CO
PKS 0132-097	0.765	0.4		OH (only)
PKS 1830-211	0.886	2-3 lensed	2 x 10 ²²	34 species (not incl. isotopic variants)

PKS 1830-211 and the z=0.89 absorber

Radio Einstein ring ~1" in size

@ 43 GHz NE and SW cores ~ 0.2 mas (Jin et al 2003)

Scaling @3 mm, and projected in the plane of the z=0.89 galaxy:

Continuum illumination ~1 pc !

Lens @z=0.89 Face-on spiral galaxy Molecular absorption along 2 lines of sight:

 SW Rgal ~ 2 kpc n(H2) ~ 10⁻³ cm⁻² Tkin ~ 50-100 K
 NE Rgal ~ 4 kpc

(Another galaxy @z=0.19 with HI, but no molecular absorption)

PdBI Muller et al 2006

A 7 mm spectral survey toward PKS 1830-211

- Covering the frequency interval 30 50 GHz (57 94 GHz rest frame)
- With ATCA, CABB system, 1 MHz resolution
- Observations in 2009 Sep 1&2, and 2010 Mar 17
- Total on-source integration time < 18h
- Reaching optical depth of a few 10⁻³

A family picture

Molecular inventory @ z=0.89 (SW)

A. 1997 St. 1	2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms
0.000	(OH)	(H ₂ O)	(NH ₃)	CH ₂ NH	CH₃OH	<u>CH₃NH₂</u>
	(CO)	C ₂ H	H ₂ CO	c-C ₃ H ₂	CH₃CN	CH₃CCH
	(CS)	HCN	<u>I-C₃H</u>	<u>I-C₃H₂</u>		<u>CH₃CHO</u>
:05	SiO	HNC	HNCO	<u>H₂CCN</u>		
specie	NS	N ₂ H+	H ₂ CS	<u>H₂CCO</u>		
34 51	SO	HCO+		<u>C₄H</u>		
	<u>SO+</u>	НСО		HC₃N		
		HOC+				
		(H ₂ S)				
		C ₂ S				

Bias toward species with:

- a high dipole moment
- a low partition function
- low energy transitions within the frequency coverage

- Ions
- Highly reactive radicals
- Unsaturated carbon chains
- Saturated species

-> Active chemistry !

Molecular abundances

Uncertainties:

- Background continuum and covering factor
- H2 column density
- Are species co-spatial ?
- Excitation and opacity effects

Comparative chemistry

Abundance richness estimator

$$\chi_{ij} = \frac{1}{N_{mol}} \sum_{k=1}^{N_{mol}} \log_{10} \left(\frac{X_{i,k}}{X_{j,k}} \right)$$

SW: abundances intermediate between those in diffuse and translucent Galactic clouds

NE: similarity with diffuse clouds

Isotopic ratios

m

n

	12C/13C	14N/15N	160/180	180/170	328/348	-
z=0.89	35 ± 11 32 ± 6	190 ± 60 143 ± 30	80 ± 25 66 ± 12	20 -7,+4 12 -2,+3	-10.5 ± 0.6	@7m @3m
NGC4945	50 ± 10	105 ± 25	195 ± 45	6.4 ± 0.3	13.5 ± 2.5	
NGC253	40 ± 10		200 ± 50	6.5 ± 1	8 ± 2	
Solar System	89	270	490	5.5	22	
Local ISM	59 ± 2	237 -21,+27	672 ± 110	3.65 ± 0.15	19 ± 8	
Galactic Center	25 ± 5	900 ± 200	250 ± 30	3.5 ± 0.2	18 ± 5	
IRC+10216	45 ± 3	> 4400	1260 -240,+315	0.7 ± 0.2	21.8 ± 2.6	

- D/H < 7 x 10^{-4} (no fractionation enhancement)

- Surprising results for 12C/13C, fractionation ?
- At high-z, enrichment dominated by short-lived massive stars (similar to SB ?)
- In the long term, effects of low-mass stars
- Preliminary results at z=0.68 follow the same trend (Muller et al in prep.)

Cosmic Microwave Background T_{CMB} vs z

At low density, Trot couple with the radiation field

From ATCA data, (LTE) Trot measurements for: HC₃N, c-C₃H₂, C₂S, 1-C₃H₂, SO, H₂CCO, H₂CCN, C₄H, CH₃CHO, CH₃NH₂

$$\rightarrow$$
 T_{CMB} @ z=0.89 (Muller et al in prep.)

$$T_{CMB} \propto (1+z)^{1-\alpha}$$

Adiabatic expansion : α = 0
Models of decaying dark energy: α > 0 (e.g. Lima 1996, Jetzer 2010)

Probing variations of fundamental constants of Physics

A variation in μ would introduce a velocity offset between lines with different frequency dependence in μ : ΔV

- For rotational lines, $K^{\mu} = -1$
- For inversion lines of **ammonia**, K^{μ} = -4.46
- Lines of **methanol** have different sensitivities K^{μ} e.g. CH3OH @ 60.531 GHz, K^{μ} = -7.4

$$\mu = m_p / m_e$$

 $\Delta V_{ij} / c = (K^{\mu}_{i} - K^{\mu}_{j}) \Delta \mu / \mu$

Flambaum & Kozlov 2007

Jansen et al 2011

Method	Target	$\Delta \mu / \mu$	Ref.	
inv.NH ₃ vs (HCO ⁺ , HCN)	B0218+357 z=0.68	< 1.8 x 10 ⁻⁶	Murphy et al 2008	
inv.NH ₃ vs HC ₃ N	PKS1830-211 z=0.89	< 1.4 x 10 ⁻⁶	Henkel et al 2009	
inv.NH ₃ vs (CS, H ₂ CO)	B0218+357 z=0.68	< 3.6 x 10 ⁻⁷	Kanekar 2011	
inv.NH ₃ vs (average of 22 species)	PKS1830-211 z=0.89	< 2.2 x 10 ⁻⁶	Muller et al 2011	
CH ₃ OH vs (average of 22 species)	PKS1830-211 z=0.89	< 1.4 x 10 ⁻⁶	Muller et al 2011	

Notion of "chemical noise"

$\Delta \mu / \mu$ and other measurements

van Weerdenburg et al 2011

Time variability of the absorption profile

HCO+ 2-1

Muller & Guélin 2008

Time variability

Changes of the NE-SW distance of up to 0.2 mas within 8 months (Jin et al 2003) Interpretation :

Recurrent ejection of plasmons along a helicoidal jet (Nair et al 2005)

Monitoring of absorption lines :

- -> potential to study the structure of GMCs at z=0.89
- -> spatial correlation for different species

Perspectives

- Chemical inventory of molecular absorbers
 - Molecules difficult to observe from the ground @ z=0
- Study of gas properties in distant galaxies
- Cosmological probes
 - Enrichment history (isotopic ratios)
 - T_{CMB} as a function of z
 - Variations of fundamental constants
- Search for new absorbers !
- EVLA, ALMA ...

EVLA Key Science Project toward PKS1830-211

National Radio Astronomy Observatory Enabling forefont research into the Universe at radio wavelengths						f Login Login to My. Search	NRAO.edu Contact us
Home	e	About NRAO	Science	F	acilities	Observing	Opportunities
Highlights	Capabilitie	s Synergies	Science Program	Key Science	Decadal Survey	Meetings & Collo	quia Image Gallery

Science > Key Science > Unbiased K/Ka/Q-band Absorption Survey towards B1830-210

Unbiased K/Ka/Q-band Absorption Survey towards B1830-210

An Unbiased K, Ka, and Q-band Absorption Survey at z = 0.88582 towards B1830-210 E. Momjian (NRAO), N. Kanekar (NRAO), D. Meier (NRAO)

Using the expanded frequency coverage of the EVLA, this group proposes an astrochemical study of a high redshift galaxy. Apart from a handful of simple molecules, very little is known about the molecular environment at high redshift. This project will trace all molecular species with rest frequencies in the 34 to 93 GHz range and provide an unprecedented view of the molecular environment at high redshift. Beyond the significant astrochemical and cosmological interest, this study would be a unique demonstration of the new continuous spectral coverage and high spectral resolution of the EVLA.

Staff | Policies | Diversity | Staff Login

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

More and bigger molecules ? Certainly interesting results !