Molecular Evolution from AGB Stars to Planetary Nebulae

Sun Kwok

June 2011: IAU Symposium 280, Toledo

Evolution of intermediate mass (1-8 M_{\odot}) stars

• Triple- α reaction (He \rightarrow C)

- Slow neutron capture (s-process) (Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu, etc)
- Thermal pulse and dredge up
- Mass loss manifested in both IR continuum and molecular emissions

Cirucmstellar dust envelope completely obscures the central star

Molecules in the gas phase

- Rotational transitions of over 60 molecules have been detected in the circumstellar envelopes of AGB stars
- Inorganics: CO, SiO, SiS, NH₃, AlCl, ..
- Organics: C₂H₂, CH₄, H₂CO, CH₃CN, ..
- Radicals: CN, C₂H, C₃, HCO⁺
- Rings (C₃H₂), chains (HC₉N)

AGB stars are prolific molecular factories

The dust continuum

- Strong continuum emission from a few μm to mm wavelengths
- Cold component (T~50-100 K): remnant of AGB dust envelope
- Warm component (T~200 K): dust formed in post-AGB evolution

When are the aromatic compounds synthesized?

- Aromatic infrared bands (AIB) not seen in AGB stars
- AIBs are strong in young planetary nebulae
- Must have emerged during the evolution between AGB and PN phases

Proto-planetary nebulae

- Objects in transition between AGB and PN stages
- ~30 PPN are known, most discovered as the result of follow up of the IRAS
 Survey (Kwok 1993, Ann. Rev. Astr. Ap., 31, 63)

No UV radiation, visible image due to scattered starlight

3.4 µm aliphatic C-H stretch

- 3.38 µm: asymmetric CH₃
- 3.42 µm: asymmetric CH₂
- 3.46 µm: lone C-H group
- 3.49 µm: symmetric CH₃
- 3.51 µm: asymmetric CH₂

The 3.4 μ m feature just as strong as the 3.3 μ m feature

Sizes of the aromatic units

• Solo: 11.1-11.6 μm

- Duo: 11.6-12.5 μm
- Trio:12.4-13.3 μm
- Quarto: 13-13.6 µm

Frequencies of out-of-plane bending modes depend on the number of exposed edges

Asymmetric profiles

ISO SWS06 (λ/Δλ~2000)

- Uniform asymmetric shape after removal of cool continuum
- Consistent peak wavelength of 20.1 μm
- No sign of substructure⇒solid state

Volk et al. 1999

Carrier of the 21 µm Feature

- Solid SiS₂: Goebel (1993), Begemann et al. (1996)
- Maghemite (Fe₂O₃) or magnetite (Fe₃O₄): Cox (1991)
- Amides (urea or thiourea): Courisseau et al. (1992), Papoular (2011)
- Hydrogenated amorphous carbon: Buss et al. (1990)
- Hydrogenated fullerenes (C₆₀H_m, m=1, 2...60) and their ions: Webster (1995)
- nanodiamonds (Hill et al. 1998)

- TiC nanoclusters (von Helden et al. 2000)
- O-substituted 5-member carbon rings (Papoular 2000)
- ${}^{3}\pi$ - ${}^{1}\Sigma$ transition of C₂ (Gruen 2001)
- SiC (Speck & Hofmeister 2004)

Unidentified 21 and 30 µm features

30 Micron Feature

۲

First detected in IRC+10216, AFGL 3068, IC 418, and NGC 6572 (Forrest et al. 1981)

Now observed in a number of PPNs

۲

IRC+10216: bending modes of C_2H_2 (Cernicharo et al. 1999)

AFGL 618: C_4H_2 , C_6H_2 , C_6H_6 (Cernicharo et al. 2001)

Polymerization of C₂H₂ in Post-AGB evolution

Chemical evolution from AGB to PN

- Extreme carbon stars (t~10⁴ yr): $C_2H_2 \Rightarrow C_6H_6$
- PPN (t~10³ yr): clusters of aromatic rings with peripheral aliphatic bonds
- PN (t~10⁴ yr): loss of H and a progressive formation of clusters of rings into more structured units

Photochemistry

- The 8 and 12 µm plateau features are due to a variety of alkane and alkene groups attached to hydrogenated aromatic rings.
- When exposed to UV light, the aliphatic side groups are modified, leading to larger aromatic rings.
- Isomerization, bond migrations, cyclization reactions.
- Ring closure and cycloaddition transform alkenes into ring systems.
- H loss leads to fully aromatic rings

Net result: UV transforms aliphatic to aromatic groups

Advantages of circumstellar chemistry

- Single energy source
- Simple geometry
- Well-determined physical environment (density p(r), temperature T(r), radiation background I(r))
- Chemical time scale defined by dynamical time scale (AGB: 10⁴ yr, PPN:10³ yr, PN: 10⁴ yr)

Spectroscopic properties

- A strong continuum from $3-200 \ \mu m$
- Aromatic features at 3.3, 6.2, 7.7, 8.6, and 11.3 μm
- Aliphatic features at 3.4, 6.9 µm
- Other features at 15.8., 16.4, 17.4, 17.8, and 18.9 μm
- Plateau features at 8, 12, 17 μm

How do they form?

- Surface temperature of red giants: 3000 degrees
- Solid grains condensed from gas in the stellar wind under near vacuum conditions
- Theoretically impossible, especially during the PPN phase
- Observationally we see aliphatics and aromatics form in PPN on time scales as short as hundreds of years
- In novae, they form on a time scale of days

What is the chemical structure of the carrier?

- Natural substances: coal (Papoular et al. 1989), kerogen, petroleum fractions (Cataldo et al. 2002), soot
- Artificial substances: hydrogenated amorphous carbon (HAC, Jones et al. 1990), quenched carbonaceous composites (QCC, Sakata et al. 1987), carbon nanoparticles (Duley & Hu 2009, Jäger et al. 2009), tholins, HCN polymer

Kerogen

- random arrays of aromatic carbon sites, aliphatic chains (-CH₂-)_n), and linear chains of benzenic rings with functional groups made up of H, O, N, and S attached
- a solid sedimentary, insoluble, organic material found in the upper crust of the Earth

Laboratory Simulations of Cosmic Dust

- Quenching of plasma of 4-torr methane (Sakata et al. 1987)
- Hydrocarbon flame or arc-discharge in a neutral of hydrogenated atmosphere (Colangeli et al. 1995)
- HAC films prepared by laser ablation of graphite in a hydrogen atmosphere (Scott and Duley 1996)
- Infrared laser pyrolysis of gas phase molecules (C₂H₄, C₄H₆)⇒C-based nanoparticles (Herlin et al. 1998)

Pure C & H or with N?

- QCC: hydrocarbon plasma deposition
- Tholins: refractory organic materials formed by UV photolysis of reduced gas mixtures (N₂, NH₃, CH₄, etc.)
- HCN polymers: amorphous hydrogenated carbon nitride, formed spontaneously from HCN

Organics in the Solar System

- Planets and their satellites, asteroids, comets, minor bodies in the outer Solar System
- Traditional picture: made up of minerals, metals, and ices
- Organics represent a major component of meteorites, comets, asteroids, and IDPs (talk by Alexander)

Carbonaceous Chondrite Meteorites

 Over 70% of the organic matter in meteorites is in the form of insoluble macromolecular material similar to kerogen (Kerridge 1999)

 possibly of interstellar origin due to excess of D, ¹³C, ¹⁵N, etc.

Interplanetary Dust

• O-XANES spectrum of IDP

- Few microns to tens of microns in size (Brownlee 1978)
- Silicates (olivine & pyroxene)
- 10-12% carbon content

 3.4 µm aliphatic feature and sometimes C=O group (Flynn et al. 2003, Keller et al. 2004)

Comparison between 3.4 µm features in Titan haze, comets, and PPNs

A model

- the organic matter in PN and PPN show a lot of similarities to IOM in meteorites and organic solids in comets and IDPs.
- An amorphous solid with mixed aromatic/aliphatic structure
- Contains impurities (O, N, S,) beyond C and H
- Small aromatic islands linked by aliphatic bridges
- Nanometer to micrometer in size

- *R: organic moiety*
- Aromatic rings and aliphatic chains
- O, N, S impurities

Derenne & Robert 2010

Summary

- Organic compounds are everywhere in the Universe (from solar system to ISM to galaxies)
- Hydrocarbons with linear, aromatic and aliphatic structures are detected in the circumstellar envelopes of evolved stars
- These carbonaceous materials undergo a change from aliphatic to aromatic structures during the transition from PPN to PN
- Chemical evolution leading to complex organic compounds can take place over only a few thousand years in the circumstellar environment

Summary (cont.)

- The detection of pre-solar grains suggests that grains from AGB stars can survive the journal through the ISM and reach the Solar System
- Macromolecular organics in meteorites, IDP, comets, and planetary satellites show similarities with organics produced by planetary nebulae
- To what extent was the Early Earth chemically enriched by the early bombardment?

A star-Earth connection