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Molecular Evolution from AGB 
Stars to Planetary Nebulae

Sun Kwok
June 2011: IAU Symposium 280, Toledo
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Evolution of intermediate mass (1-8 M⊙) stars

• Triple- reaction 
(HeC)

• Slow neutron capture 
(s-process) (Y, Zr, Ba, La, 
Ce, Pr, Nd, Sm, Eu, etc)

• Thermal pulse and 
dredge up

• Mass loss manifested in 
both IR continuum and 
molecular emissions 

3 M⊙ track
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Molecules in the gas phase

• Rotational transitions of over 60 molecules 
have been detected in the circumstellar 
envelopes of AGB stars

• Inorganics: CO, SiO, SiS, NH3, AlCl, ..
• Organics: C2H2, CH4, H2CO, CH3CN, ..
• Radicals: CN, C2H, C3, HCO+

• Rings (C3H2), chains (HC9N)
AGB stars are prolific molecular factories
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Remnant AGB dust envelope in PN
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However, the chemical composition of the dust is not the same
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The dust continuum

• Strong continuum emission from a few μm 
to mm wavelengths

• Cold component (T~50-100 K): remnant of 
AGB dust envelope

• Warm component (T~200 K): dust formed 
in post-AGB evolution
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When are the aromatic compounds 
synthesized?

• Aromatic infrared bands (AIB) not seen in 
AGB stars

• AIBs are strong in young planetary nebulae
• Must have emerged during the evolution 

between AGB and PN phases
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Proto-planetary nebulae
• Objects in transition 

between AGB and PN stages
• ~30 PPN are known, most 

discovered as the result of 
follow up of the IRAS 
survey (Kwok 1993, Ann. Rev. Astr. Ap., 

31, 63)

No UV radiation, visible image due to scattered starlight
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3.4 μm aliphatic C-H stretch

• 3.38 μm: asymmetric CH3

• 3.42 μm: asymmetric CH2

• 3.46 μm: lone C-H group
• 3.49 μm: symmetric CH3

• 3.51 μm: asymmetric CH2

The 3.4 µm feature just as strong 
as the 3.3 µm feature 
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Aliphatic sidegroups in young PN
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Sizes of the aromatic units

• Solo: 11.1-11.6 μm
• Duo: 11.6-12.5 μm
• Trio:12.4-13.3 μm
• Quarto: 13-13.6 μm

Hugdins and Allamandola 1999

Frequencies of out-of-plane 
bending modes depend on the 
number of exposed edges
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Broad emission plateaus
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Aliphatic bending modes

• 8m plateau: -CH3 (7.25 m), -C(CH3)3 (8.16 m, “e”), =(CH3)2 (8.6 m, “f”)
• 12 m plateau: C-H out-of-plane bending modes of alkene (“a”, “b”), cyclic 

alkanes (9.5-11.5 m, “c”), long chains of -CH2- groups (13.9 m, “d”). 

Kwok et al. 2001
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17 µm plateau

• Aromatic C-C-C in-
and out-of-plane 
distortion? (Van 

Kerckhoven et al. 2000)

Zhang et al. 2010
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Unidentified 21 m Feature

First detected by IRAS LRS in C-rich post-AGB stars (Kwok, Volk & Hrivnak 1989)
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Asymmetric profiles

• ISO SWS06 (λ/Δλ~2000)
• Uniform asymmetric 

shape after removal of 
cool continuum

• Consistent peak 
wavelength of 20.1 μm

• No sign of 
substructuresolid state

Volk et al. 1999
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Consistent profiles

λ0=20.1±0.1 µm Spitzer IRS
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Carrier of the 21 m Feature
• Solid SiS2: Goebel (1993), Begemann et al. (1996)
• Maghemite (Fe2O3) or magnetite (Fe3O4): Cox (1991)
• Amides (urea or thiourea): Courisseau et al. (1992), 

Papoular (2011)
• Hydrogenated amorphous carbon: Buss et al. (1990)
• Hydrogenated fullerenes (C60Hm, m=1, 2…60) and their 

ions: Webster (1995)
• nanodiamonds (Hill et al. 1998)
• TiC nanoclusters (von Helden et al. 2000)
• O-substituted 5-member carbon rings (Papoular 2000)
• 3-1Σ transition of C2 (Gruen 2001) 
• SiC (Speck & Hofmeister 2004)
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Features at 15.8 and 16.4 µm



31/5/2011

23

15.8 µm feature

• Δλ~1.3 µm 
• Strong in 21 µm sources

Hrivnak et al. 2009, Zhang et al. 2010

21 µm

15.8 µm



31/5/2011

24

0 10 20 30 40 50
Wavelength (m)

0

100

200

300

400

500

F
(

10
-1

0 er
g 

cm
-2

 s-1
)

IRAS 22272+5435

ISO SWS01

6.2

6.9

7.8

26

11.3

20.3

12.2

16.0

6.2: sp2 C=C stretch
6.9: sp3 C-H bend
7.8: sp2 C-C stretch
11.3: sp2 C-H out-of-plane bend
12.2: sp2 C-H out-of-plane bend

Unidentified 21 and 30 µm features



31/5/2011

25

30 Micron Feature
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The roles of O, S, and N

Aliphatic chains of CH2 groups, oxygen bridges, and OH groups

Red: O
Green: C
Grey: H

Papoular 2011
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From acetylene to benzene

IRC+10216: bending modes of 
C2H2 (Cernicharo et al. 1999)

AFGL 618: C4H2, C6H2, C6H6
(Cernicharo et al. 2001)
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Polymerization of C2H2
in Post-AGB evolution
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Chemical evolution from AGB to PN

• Extreme carbon stars (t~104 yr): 
C2H2C6H6

• PPN (t~103 yr): clusters of aromatic rings 
with peripheral aliphatic bonds

• PN (t~104 yr): loss of H and a progressive 
formation of clusters of rings into more 
structured units



31/5/2011

32

Photochemistry

• The 8 and 12 m plateau features are due 
to a variety of alkane and alkene groups 
attached to hydrogenated aromatic rings.

• When exposed to UV light, the aliphatic 
side groups are modified, leading to larger 
aromatic rings.

• Isomerization, bond migrations, 
cyclization reactions.

• Ring closure and cycloaddition transform 
alkenes into ring systems.

• H loss leads to fully aromatic rings

Net result: 
UV 
transforms 
aliphatic to 
aromatic 
groups
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Advantages of circumstellar chemistry

• Single energy source
• Simple geometry
• Well-determined physical environment 

(density (r), temperature T(r), radiation 
background I(r))

• Chemical time scale defined by dynamical 
time scale (AGB: 104 yr, PPN:103 yr, PN: 
104 yr) 
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Spectroscopic properties

• A strong continuum from 3-200 µm
• Aromatic features at 3.3, 6.2, 7.7, 8.6, and 

11.3 µm
• Aliphatic features at 3.4, 6.9 µm
• Other features at 15.8., 16.4, 17.4, 17.8, and 

18.9 µm
• Plateau features at 8, 12, 17 µm
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Spectral fitting
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Proto-planetary nebulae

21 µm
C-H out-of-plane 
bending modes

C-H in-plane 
bending modes
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How do they form?

• Surface temperature of red giants: 3000 degrees
• Solid grains condensed from gas in the stellar 

wind under near vacuum conditions
• Theoretically impossible, especially during the 

PPN phase
• Observationally we see aliphatics and aromatics 

form in PPN on time scales as short as hundreds of 
years

• In novae, they form on a time scale of days
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Organics in novae
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What is the chemical structure of the carrier?

• Natural substances: coal (Papoular et al. 1989), 
kerogen, petroleum fractions (Cataldo et al. 2002), 
soot

• Artificial substances: hydrogenated 
amorphous carbon (HAC, Jones et al. 1990), 
quenched carbonaceous composites (QCC, 
Sakata et al. 1987), carbon nanoparticles (Duley & Hu 

2009, Jäger et al. 2009), tholins, HCN polymer
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Infrared Spectrum of Coal

Guillois et al. 1996

Emission plateaus
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Kerogen

• random arrays of aromatic carbon sites, 
aliphatic chains (-CH2-)n), and linear chains 
of benzenic rings with functional groups 
made up of H, O, N, and S attached 

• a solid sedimentary, insoluble, organic 
material found in the upper crust of the 
Earth
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Petroleum fractions

Anthracite coal

Modified fraccion 2

Distillate 
aromatic extract

PPN 22272+5435
Cataldo et al. 2004
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Laboratory Simulations of Cosmic Dust

• Quenching of plasma of 4-torr methane (Sakata et al. 

1987)
• Hydrocarbon flame or arc-discharge in a neutral of 

hydrogenated atmosphere (Colangeli et al. 1995)
• HAC films prepared by laser ablation of graphite 

in a hydrogen atmosphere (Scott and Duley 1996)
• Infrared laser pyrolysis of gas phase molecules 

(C2H4, C4H6)C-based nanoparticles (Herlin et al. 

1998)
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Pure C & H or with N?

• QCC: hydrocarbon plasma deposition
• Tholins: refractory organic materials formed 

by UV photolysis of reduced gas mixtures 
(N2, NH3, CH4, etc.)

• HCN polymers: amorphous hydrogenated 
carbon nitride, formed  spontaneously from 
HCN
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Organics in the Solar System

• Planets and their satellites, asteroids, 
comets, minor bodies in the outer Solar 
System

• Traditional picture: made up of minerals, 
metals, and ices

• Organics represent a major component of 
meteorites, comets, asteroids, and IDPs (talk 

by Alexander)
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Carbonaceous Chondrite Meteorites

• Over 70% of the organic 
matter in meteorites is in 
the form of insoluble 
macromolecular material 
similar to kerogen (Kerridge 

1999) 
• possibly of interstellar 

origin due to excess of D, 
13C, 15N, etc. Functional groups identified in 

Murchison IOM (Cody et al. 
2011)
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Interplanetary Dust

• Few microns to tens of microns in 
size (Brownlee 1978)

• Silicates (olivine & pyroxene)
• 10-12% carbon content
• 3.4 µm aliphatic feature and 

sometimes C=O group (Flynn et al. 

2003, Keller et al. 2004)

O-XANES spectrum of IDP
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Comparison between 3.4 µm features in Titan 
haze, comets, and PPNs

Kim et al. 2011
Kim et al. 2011
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A model

• the organic matter in PN and PPN show a lot of 
similarities to IOM in meteorites and organic 
solids in comets and IDPs.

• An amorphous solid with mixed aromatic/aliphatic 
structure

• Contains impurities (O, N, S, ) beyond C and H
• Small aromatic islands linked by aliphatic bridges
• Nanometer to micrometer in size



31/5/2011

51

Derenne & Robert 2010

• R: organic moiety
• Aromatic rings and aliphatic chains
• O, N, S impurities
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Summary

• Organic compounds are everywhere in the 
Universe (from solar system to ISM to galaxies)

• Hydrocarbons with linear, aromatic and aliphatic 
structures are detected in the circumstellar 
envelopes of evolved stars

• These carbonaceous materials undergo a change 
from aliphatic to aromatic structures during the 
transition from PPN to PN

• Chemical evolution leading to complex organic 
compounds can take place over only a few 
thousand years in the circumstellar environment
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Summary (cont.)

• The detection of pre-solar grains suggests that 
grains from AGB stars can survive the journal 
through the ISM and reach the Solar System

• Macromolecular organics in meteorites, IDP, 
comets, and planetary satellites show similarities 
with organics produced by planetary nebulae

• To what extent was the Early Earth chemically 
enriched by the early bombardment?

A star-Earth connection


