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Why should you care?

* You may not want to do spectral line surveys

* You may be interested in just one line/species

but with instruments like HIFI or ALMA

* Line surveys want you to do them

* You will (almost) always get more lines than
you intended

e ...and that's a good thing!
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Typical ALMA spectrum
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Fact

e With ALMA, we will see hundreds and thousands of
sources with a similar line density

e High-mass SFR
 Low-mass SFR
« Galactic nuclei

« Starburst regions

o Strategy options

e concentrate on your pet transitions and ignore 95% of the
iInformation in the spectra

- may not be a viable option at all!
 try to deal with it



Step back - what do we want?

* Analyze excitation of a selected set of molecules
to determine source structure

* look for specific, maybe weak (new?) molecule
or Isomer or isotopologue

e need weed removal, but

- before you kill something, you have to understand it
* Or

e you want to analyze the chemistry, i.e. you want
to know the abundance distributions of a lot of
species



So...

* |n most cases, you have to go through the

sequence

Taking stock:
Line identification

De-weeding:
Removing of unwanted
lines

Analysis of wanted
lines




Steps forward

« Knowing what's there: Line Identification

e Tools

- XCLASS
https://www.astro.uni-koeln.de/projects/schilke/ XCLASS
based on GILDAS CLASS package

- CASSIS
http://cassis.cesr.fr/?page=cassis
can be used with HIPE or as standalone package

- Weeds
Included in GILDAS package


https://www.astro.uni-koeln.de/projects/schilke/XCLASS
http://cassis.cesr.fr/?page=cassis

Molecular data: catalogs

* Molecular parameters
e Cologne Database for Molecular Spectroscopy
« JPL database

« Splatalogue
Compilation of CDMS and JPL with a few extra entries

e Collision rates

« BASECOL
« LAMDA

e Chemical rates
« KIDA, UMIST, OSU

VAMDC

Virtual Afomic and Molecular Data Centre



Line Identification and Analysis

* In line rich sources, line identification of any line (except
the strong, boring ones) requires a good model of the
whole spectrum because of blending

- It requires understanding the excitation and abundances of all
species

- only this gives an idea of how well the spectrum is known
- Including isotopologues (important to constrain optical depths)

* Holistic approach adopted by HEXOS and CHESS GT
KPs for

- Orion, SgrB2(M), SgrB2(N), NGC 6334(l)



blue: CH,CN
red: all species
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Any attempt to identify any single line or

species or to understand the excitation of

any single species in a line rich source Is
futile.



But ALMA will produce
Data Cubes

Source: S5grB2ZN  Line: freq: 342.883 GHz Beam: 0.67 x 0.64 PA 15°
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Consequences

 New Instruments, particularly ALMA, will
produces data in large quantities, and with high
qguality that demand better modeling then we
are used to now

* Multi-line studies will be very common
e Need to take source structure into account

» XCLASS and friends are OK for identification,
but far too primitive for any in-depth analysis

e Same Is true for single-component LVG models
= 3-d modeling Is eventually required



Interferometry requires

full structure modeling




Interferometry requires

full structure modeling




Interferometry requires

full structure modeling




Danger: drowning in the sea of free parameters



Physical Model
of
Star Formation

Ideally...

A

Chemical Model
in 3-D
following evolution

3-D
radiative transfer
model
simulating data

Improvement

ALMA Data




Method

 Has been pioneered by Leiden Group, but now we
need it to be

- Multi-molecule

- 3-d

- automatic,

- with quality estimate,

- with confidence parameters.



Components:
chemical modeling

* gas phase rates including

- Interactions with photons (UV, X-ray)

- high-temperature rates (e.g. in shocks)
 for all species, including complex organics
» dust

- sticking coefficients

- moveability of species

- reaction rates on surface
- release mechanisms



Components.:
radiative transfer modeling

* Molecular Data

e For

Energies
Frequencies
Line strengths
Collision rates

all observable molecules, including complex
organics, isotopologues

Including transitions to and within
vibrationally excited levels



Components.:
radiative transfer modeling

* Dust properties

- absorption coefficients as function of
wavelength

- for calculating thermal structure self-
consistently



Components.:
radiative transfer modeling

- For very reactive molecules (CO*, H,O", ...)

chemical formation/destruction can compete with
Inelastic collisions

- radiative transfer and chemistry are coupled

* Time dependent chemistry: chemistry has to follow
physics (density, thermal history, radiation,
shocks...)

- chemistry and physics are coupled



Goal: solving the inverse problem

* Need to know:

» Structure of 6-d phase space

- 3-d spatial structure
- Velocity vectors at each point

 Measure directly:

» 2-d spatial structure (in continuum and lines), but
Integrated over line-of-sight

» 1-d (radial) velocity (with molecular lines)

* Velocities in the plane of the sky only in very rare cases
(masers, in very small regions)



Example: radmc-3d

« Written by Kees Dullemond, Heidelberg

e Dust continuum radiative transfer
« computation of dust temperature and scattering
* Gas line transfer
« (ray-tracing only, i.e. LTE or user-specified populations)
« LVG (Sobolev approximation) mode for level populations
« Full non-LTE ALI radiative transfer [planned for 2011/2012]

« Adaptive Mesh Refinement



radmc-3d example
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Example: LIME

Written by Christian Brinch, Leiden
Continuum and line radiation transfer
Transport on unstructured Delaunay lattices
Automatic gridding

Full 3D model capabilities

Proper treatments of line blending

Multiple species

Multi-line raytracing



LIME example
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Comparison engine

* Need to find best-fit model
 Need to know confidence parameters
« MAGIX: Part of ASTRONET CATS Project

* Preloaded models
http://www.astro.uni-koeln.de/projects/schilke/MAGIX




Example applications:

Velocity field in SgrB2(M) from

HEXOS HIFI data
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Velocity |km/s]

Example applications:

Velocity field in SgrB2(M) from

HEXOS HIFI data
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850 micron intensity [K]

Example application:
Density profile in SgrB2(N) from
SMA data
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Example application:
vibrationally excited HCN in G10.47

VLA HCMwvp=1 J=13 model for G10.47+0.03
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Conclusions

e Modern instruments like ALMA have an
enormous potential for advancing
astrochemistry as diagnostics of star
formation

e Sophisticated modeling Is needed

e Coupling to physical and chemical models
and reproducing the observations restricts
the number of free parameters

 |t's still a long way to go until we have
established, robust procedures




We have taken only
the first steps on a
long road




We have taken only
the first steps on a
long road

- but they are steps
In the right direction!
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