The Chemistry of the Early Universe

Simon Glover (ITA/ZAH, University of Heidelberg)

Outline

Pregalactic chemistry

Chemistry and Pop. III star formation

Chemistry at low metallicity

Pregalactic chemistry

Composition of IGM at end of recombination:

- Hydrogen: 99.98% atomic, 0.02% ionized
- Helium: mostly He, minimal He⁺
- Lithium: mostly Li⁺, minimal Li

From this starting point, we can make a lot of ions and molecules: H⁻, H₂⁺, H₂, HD, D₂, H₃⁺, H₂D⁺, HeH⁺, LiH, LiH⁺, etc. Divide up the possible products into two classes: primary and secondary

Primary products can be produced directly from our starting material, e.g. H⁻, H₂⁺, HeH⁺

Secondary products form via reaction chain relying on at least one primary product, e.g. H₂, HD, H₃⁺ Primary products – evolution determined by three important timescales

- Photodestruction time: $t_{ph} = 1 / R_{ph}$
- Formation time: $t_{form} = n_x / C_x$

- Hubble time: $t_H = 1 / H(z)$

At high redshift, photodissociation dominates:

- t_{ph} << t_H
- $t_{ph} = t_{form}$ only when n_x very small
- As we move to lower redshift, CMB shifts to lower energies. Eventually, we run out of photons above photodestruction threshold:
 - t_{ph} >> t_H
 - n_x increases rapidly until $t_{form} = t_H$
 - $t_{form} \propto (1+z)^{-3}$, $t_H \propto (1+z)^{-3/2}$, so abundance of species X quickly "freezes out"

Evolution of secondary products more complicated, as depends on primary products

 If multiple formation pathways, then get formation concentrated at several different redshifts

→ H₂ forms by two main pathways:

 H + e⁻ → H⁻ + photon

 H⁻ + H → H₂ + e⁻

 H + H⁺ → H₂⁺ + photon

 H₂⁺ + H → H₂ + H⁺

In absence of photodestruction, H⁻ pathway most effective, but H⁻ is fragile and electron easy to photodetach

Complications

Spectral distortion of CMB: (e.g. Switzer & Hirata, 2005; Hirata & Padmanabhan, 2006)

Stimulated radiative association: (e.g. Stancil & Dalgarno, 1997, 1998; Zygelman, Stancil & Dalgarno, 1998)

Non-LTE level populations: (e.g. Coppola et al, 2011; see also posters by Longo and Coppola, this meeting)

Population III

Gas falls into protogalaxy, shock-heated to protogalactic virial temperature

In H₂ fraction in IGM too small to cool this shock-heated gas => most H₂ forms in situ

As H₂ forms, cooling time drops, allowing gravitational collapse to begin

How much H2 do we form?

Consider a toy model of the chemistry that includes only H⁺ recombination, plus formation of H₂ via H⁻ (Tegmark et al, 1997)

At fixed T, fractional ionization evolves as:

 $x_e = x_0 / (1 + t / t_{rec})$

 \odot H₂ fraction evolves as:

 $x_{H2} = (k_{ra}/k_{rec}) \ln (1 + t / t_{rec})$

where k_{ra} is rate coefficient for formation of H^- by radiative association

Logarithmic dependence on time, most H₂
 forms within first few recombination times

 H₂ cooling rate also strongly increasing function of T

 Critical protogalactic virial temperature at which we form enough H₂ to cool within a Hubble time

n ~ 10⁴ cm⁻³: temperature reaches minimum
 value, T ~ 200 K; H₂ level populations approach
 LTE

n ~ 10⁸ - 10¹⁰ cm⁻³: onset of three-body H₂
 formation:

 $H + H + H \rightarrow H_2 + H$

 $H + H + H_2 \rightarrow H_2 + H_2$

 $H + H + He \rightarrow H_2 + He$

n ~ 10⁴ cm⁻³: temperature reaches minimum
 value, T ~ 200 K; H₂ level populations approach
 LTE

n ~ 10⁸ - 10¹⁰ cm⁻³: onset of three-body H₂
 formation:

 $H + H + H \rightarrow H_2 + H$

 $H + H + H_2 \rightarrow H_2 + H_2$

 $H + H + He \rightarrow H_2 + He$

 n ~ 10¹⁰ cm⁻³: H₂ lines become optically thick at line centers, but cooling continues through line wings (Omukai et al, 1999)

In ~ 10¹⁴ cm⁻³: H₂ CIE cooling (Ripamonti & Abel, 2004)

 n ~ 10¹⁶ cm⁻³: continuum becomes optically thick, H₂ dissociates (Yoshida et al, 2008)

 n ~ 10¹⁰ cm⁻³: H₂ lines become optically thick at line centers, but cooling continues through line wings (Omukai et al, 1999)

 $n \sim 10^{14} \text{ cm}^{-3}$: H₂ CIE cooling (Ripamonti & Abel, 2004)

 n ~ 10¹⁷ cm⁻³: continuum becomes optically thick, H₂ dissociates (Yoshida et al, 2008) Protostellar mass at formation ~ 0.01 M_☉
 Surrounded by envelope with 100+ M_☉
 Until recently, it was assumed that protostar <u>accreted most of this mass (e.g. Abel et al, 2002)</u>

Recent studies indicate that H₂ cooling of protostellar accretion disk allows it to fragment (e.g. Clark et al, 2011; Greif et al, 2011)

IMF resulting from this still not known – solar mass Pop. III stars possible???

Protostellar mass at formation ~ 0.01 M_☉
Surrounded by envelope with 100+ M_☉
Until recently, it was assumed that protostar

accreted most of this mass (e.g. Abel et al, 2002)

Recent studies indicate that H₂ cooling of protostellar accretion disk allows it to fragment (e.g. Clark et al, 2011; Greif et al, 2011)

IMF resulting from this still not known – solar mass Pop. III stars possible???

Chemistry at low Z

Introduction of metals => more coolants

Most work to date has focussed one of two regimes:

- Low density, low H₂ fraction, most metals in atomic form, CII and OI f.s. dominate
- High density, high H₂ fraction, dust cooling dominates

 Unclear how important molecular chemistry is for determining thermal balance

Atomic regime

Dust-cooled regime

Open questions

What's the ratio of dust to gas-phase metals?

What are the dust properties (composition, size distribution, etc.)?

Can atomic fine structure cooling alone lead to formation of low mass stars, or do we need the dust?

How important are the molecular coolants?

