

Formation and Destruction Processes of Carbonaceous Interstellar Dust

Cesar S. Contreras, Claire L. Ricketts, and Farid Salama Space Science & Astrobiology Division, NASA Ames Research Center

Introduction Criteria and Methods

- Discharge, Ion Source Apparatus
- Cavity Ring Down Spectrometer
- Reflectron Time of Flight Mass Spectrometer

Results

- Hydrocarbons
- Benzene, Benzene analogs
- Small PAHs
- Mixtures

Summary and Future Work

International Astronomical Union Conference, May 2011

Introduction

Carbon Grain Formation NGC 300 (3.3 and 7.8 μm PAH band overlays)

http://www.spitzer.caltech.edu/features/articles/20050627.shtml

PAH structures

Carbon nanoparticles

G. Pascoli, A. Polleux, A&A (2000)

Methods – Pulsed Nozzle Discharge

Pulsed Nozzle Discharge setup

Simulation of the plasma

Davis et al., J. Chem. Phys. (1997)

Methods - System

The setup now combines:

- Pulsed discharge nozzle
- Cavity ring down spectrometer
- Reflectron Time-of-Flight mass spectrometer

Fragmentation & Detection of Carbon Particles

μ L²MS of soot formed from C₁₂H₁₀ (154 amu) precursor.

Plasma energy voltage

Biennier et al. - 2005

Methods – ReTOF-MS

Ricketts, C.L., Contreras, C.S., & Salama, F., 2011, Int. J. Mass Spectrom. Ion Processes, 300, 26

Results - Hydrocarbons

Methane (CH4)			
	Plasma	EI	
m/z	(Intensity)	(Intensity)	
12	173	613	
13	823	1632	
*13.3		249	
14	37858	2855	
15	133201	15228	
16	106703	17336	
17	24048	24	
*18		344	
*20	4370	11516	
27	2959		
28	3397	359	
29	32796		
*36	2737	401	
*38	207		
*40	176840	68668	
*80	476		
* 4 0 0	A 21		

	ΗŅ				
	H-Ç-Ç-	—H			
	Ethane (C	2H6)			
	Plasma El				
m/z	(Intensity)	(Intensity)			
12		228			
13	131	288			
13.3	469				
14	497	801			
4.5	94	207			
15	3803	1147			
*18		325			
*20	6941	12932			
24	133	220			
25	736	932			
26	17477	4525			
27	36461	6221			
28	85369	17306			
29	23337	3582			
30	27236	4598			
*36		435			
*40	108857	72026			
55	240				

Ethylene (C2H4)

ΕI

(Intensity)

526

877

1217

301

10029

745

2524

11823

12133

18578

158

486

63547

--

--

--

--

--

--

Plasma

(Intensity)

246

--

395

--

281

22190

40599

59414

7781

--

1411

76050

13008

1051

1432

186

329

298

252

m/z

12

13

14

*18

*20

24

25 26

27

28 29

*36

39

*40

41

53

55

67

68

69

*80

H−C≡C−H

Acetylene (C2H2)		
	Plasma	EI
m/z	(Intensity)	(Intensity)
*13.3	271	
15	417	377
*18		389
*20	4896	10832
24	1218	2306
25	5888	7233
26	50733	27732
27	851	293
*36	638	521
*38	152	
39	120	
*40	103094	66939
43	192	
50	6147	
51	9581	
58	881	308
59	356	
66	1265	
74	131	
75	175	
76	248	
77	176	
*80	140	

- *13.3 Ar³⁺
- *18 H₂O+
- *20 Ar²⁺
- 36 ³⁶Ar⁺
- 38 ³⁸Ar⁺
- 40 Ar+
- 80 Ar₂+

Results – Benzene Analogs

Results – Homogenous PAHs

Results – Heteregenous PAHs

Results – Mixtures of Benzene Analogs with Acetylene

Benzene			
		w/C2H2	
m/z	Intensity	m/z	Intensity
76	0.03	76	0.07
77	0.10	77	0.13
78	1.00	78	1.00
79	0.04	79	0.14
128	0.02	128	0.10
153	0.02	129	0.07
155	0.01		

Toluene			
		w/C2H2	
m/z	Intensity	m/z	Intensity
77	0.08	76	0.14
78	0.14	77	0.16
89	0.12	78	0.05
90	0.13	91	0.36
91	1.20	92	1.00
92	1.00	93	0.12
93	0.10	127	0.05
		128	0.15

Pyridine			
		w/C2H2	
m/z	Intensity	m/z	Intensity
78	0.24	76	0.19
79	1.00	77	0.14
80	0.33	78	0.26
81	0.03	79	1.00
89	0.04	80	0.90
90	0.03	81	0.18
90	0.04	104	0.18
91	0.04	105	0.13
92	0.07	130	0.28
117	0.06	131	0.12
119	0.04		
130	0.10		
131	0.07		

Mixtures of PAH precursors with Acetylene did not produce any formation products...

Results – Mixtures: Toluene/Hydrocarbon Examples

Experiment Summary

- Formation of larger ions observed for hydrocarbons and benzene analogs
- Small PAH formation may be efficient and possible by using acetylene as a precursor, either in a mixture or by itself
- Formation up to C_6H_5 is observed for Acetylene in an Argon plasma
- Larger PAH formation was not observed for the PAH precursors for the energies and concentrations studied

Future Work

- Complete reaction monitoring and reaction rates for Acetylene/Benzene experiments
- Study larger PAH precursors and their fragmentation patterns
- Optical Spectroscopy Spectra of ions observed from MS, that meet the abundance criteria, for direct comparison with observations
- Further analysis of soot material produced, in collaboration with Richard Zare (Stanford U.) and Ludovic Biennier (Université de Rennes 1)

Acknowledgements

- Collaborators, Ludovic Biennier, Richard Zare, Hassan Sabbah. Discussions with Veronica Bierbaum, Xiaofeng Tan, Jerome Remy, & Robert Walker.
- This work is supported by the NASA Astrophysical Research and Analysis (APRA) Program of the Science Mission Directorate and by the NASA/ORAU Post Doctoral Program (NPP)