From Kepler to CHEOPS Benefits for atmosphere characterisation

Brice-Olivier Demory

Cavendish Laboratory University of Cambridge

<u>bod21@cam.ac.uk</u>

Main collaborators for this work

Estelle Meurgues (ISAE), Didier Queloz (Cambridge), Kevin Heng (Bern), Julien de Wit (MIT), Tiffany Kataria (Exeter), Andras Zsom (MIT), Vlada Stamenkovic (MIT), Michael Gillon (Liege), Nikole Lewis (MIT), Jonathan Fortney (UCSC), Nikku Madhusudhan (Cambridge).

Clouds are limiting our knowledge of exoplanets

F. Pont, exoclimes.com

Coupling Visible and IR observations is crucial

Seager et al., 2003

Planetary light of Kepler-7b

Kepler-7b 5-day period 1.5x Jupiter's size 0.5x Jupiter's mass 15% Jupiter's dens.

Occultation in the visible (Q0-Q4 Kepler data)

Demory et al., 2011

The surprisingly large albedo of Kepler-7b

Kepler A_g (hot Jupiters) : 0.06 - 0.11

VIS Phase-curve of Kepler-7b

Phase curve in the visible

Demory et al., 2013 See also Esteves+ 2014

First map of clouds of an exoplanet

Demory et al., 2013

Reflected light as the dominant source of Ag

Kepler-7b

IR occultations with depths ~2mmag were expected.

Therefore the origin of planetary light seen in the visible is not primarily of thermal origin.

Occultations: 1D nature of clouds

GCMs: toward the 3D nature of clouds

More about cloud properties: see talk from Antonio Garcia Munoz

Lewis+ in prep.

Kepler-7b

Phase-curve studies similar to K7b are feasible with CHEOPS

Kepler-7b - QI data (Demory et al. 2013)

CHEOPS potential for exoplanet phase-curves

Assumptions

- White noise: 150 ppm/minute for a Vmag=9 star in the V-band (*)
- Red noise: 20 ppm for a Vmag=9 star in the V-band (*)
- Orbit-to-orbit systematics (temperature) similar to HST.

(*) source: CHEOPS Definition Study Report, ESA, November 2013

CHEOPS potential for exoplanet phase-curves

Test case: KOI-13A (Vmag = 12) - 50 days of observations

Includes:

reflective,
Doppler, ellipsoidal components.
CHEOPS simple noise model

CHEOPS potential for exoplanet phase-curves

Results

- 15 orbits
- Low (0.1) and high (0.3) albedos
- Small (10 deg) and large (40 deg) phase offsets

			High albedo and high offset Ratic		High albedo and low offset		low albedo and high offset		low albedo and low offset	
Name	Mag.	Duration of observation (in days)	offset	Ap	offset	Ар	offset	Ap	offset	Ap
HD 209458 b	7,65	53,6	16,727	29,120	3,866	33,258	3,716	10,200		
HD 189733 b	7,67	34,0	23,986	47,201	5,560	42,742	5,588	11,929		
HD 149026 b	8,16	43,8	3,553	7,566						
WASP-33 b	8,30	19,00	30,416	50,887	6,251	55,551	7,876	15,134		
KELT-2 A b	8,71	62,41	6,171	13,085						
HAT-P-2 b	8,71	85,20	4,794	8,130						
WASP-18 b	9,39	14,82	14,218	37,274	5,342	29,453	4,533	10,745		

CHEOPS potential for exoplanet phase curves

PLANET	TEQ [K]	REQ. TIME [d]	HST obs	Spitzer obs
HD 189733 b	1185	34	x	x
WASP-7 b	1377	75	х	x
HD 209458 b	1428	54	х	x
WASP-77Ab	1688	21	x	
HAT-P-8 b	1749	47	х	х
HAT-P-23 b	2024	19	х	x
WASP-19 b	2039	12	x	х
WASP-18 b	2367	15	x	x
WASP-12 b	2551	17	x	x
WASP-94Ab	1604	59		

129 days (4 months)

Summary

- Clouds are becoming a limiting factor in exoplanet characterisation
- CHEOPS can constrain cloud properties (distribution, climate patterns) that would lead to a better handling of the impact on exoplanet spectra
- Large time commitment (**3-4 months**) necessary for a meaningful sample but **no scheduling constraints**.