

Steps towards the interpretation of exoplanet phase curves

Antonio García Muñoz (¶) & Kate Isaak Scientific Support Office, SRE, ESA/ESTEC, Noordwijk, Netherlands

¶: ESA Research Fellow

Phase curves

A classical problem in planetary science

CHEOPS Science Workshop #3 – 19 June 2015, Madrid, Spain

Venus phase curves

ABSTRACT

Arking & Potter, JAS, 1968

Theoretical models of the Venus cloud layer are compared with observations in the U, B and V spectral regions. It is found that the models are sensitive to the detailed scattering properties of the particles. A model of a terrestrial type cloud containing spherical water droplets or ice particles with radii distributed around 4μ provides good agreement with the observed phase curve of Venus, superior to that obtained in previously published calculations. There is a small disagreement with the observations at low phase angles, suggesting the particles may have a slightly higher index of refraction than for water. However, observations are sparse and uncertain at these angles and improved data are needed to resolve this point. The comparison with observations leads to the following conclusions: the particles in the cloud layer must be of micron-size or larger, and are highly transparent; highly reflective but opaque particles are excluded; and scattering properties of the cloud particles on Venus resemble those of water droplets, ice particles, or particles of transparent minerals such as quartz.

$$r_{eff} \sim 1.05 \ \mum; \ \varpi_0 \sim 1$$
Image: Image: Image: Solution of the second seco

These are key constraints on cloud microphysics and composition!!

3

Venus phase curves

CHEOPS Science Workshop #3 – 19 June 2015, Madrid, Spain

Venus... Earth, Titan, ...

Both $A_a \& \Phi(\alpha)$ contain unique unique info on the planet atmosphere

CHEOPS Science Workshop #3 – 19 June 2015, Madrid, Spain

6

Kepler-7b

A phase curve dominated by reflected starlight

Kepler-7b Perturbation in cloud optical thickness

CHEOPS Science Workshop #3 – 19 June 2015, Madrid, Spain

7]

Kepler-7b Perturbation in particle effective size

Kepler-7b Perturbation in single scattering albedo

CHEOPS Science Workshop #3 – 19 June 2015, Madrid, Spain

Some final thoughts

Optical phase curves can constrain atmospheric properties: **Both GOOD optical + NIR data are needed.**

Separating the planet & star signals of integrated photometry:

$$\frac{f_{\text{tot}}}{f_{\star}} = 1 + \frac{f_{\text{th,day}} + f_{\text{th,night}} + f_{\text{ref}} + f_{\text{ell}} + f_{\text{dop}}}{f_{\star}}$$

f_{ref}: often rely on 'template' (*Lambertian*) phase curve shape. Implications for e.g. planetary mass (Mislis et al., A&A, 2012)

