Multicolor Photometry as a tool to investigate exoplanet structures and atmospheres

Ines Gabriela Juvan

Space Research Institute Graz, Austrian Academy of Sciences and IGAM, University of Graz

> 19th of June, 2015 #3 CHEOPS Science Workshop Madrid Ines.Juvan@oeaw.ac.at

OUTLINE

- General Introduction & Motivation
- Methods
- Preliminary Results
- Summary & Outlook

INTRODUCTION - BACKGROUND

characterization of exoplanets (structure, atmosphere and formation)
 shift from detection to characterization of exoplanets

transiting exoplanets

- offer unique opportunities for characterization of their atmospheres (multicolor photometry; transmission spectroscopy)

recent discoveries & studies

 new class of planets detected (super-Earths & mini-Neptunes; no Solar System analogs)

- studies show radius anomalies

definition of reference radii

- reference radius not always at 1 bar level for exoplanets

future space missions

- CHEOPS, PLATO,...

INTRODUCTION - IDEAS & AIMS

CoRoT Mission

- CoRoT offers simultaneous multicolor transit observations
- use chromatic light curves as an exoplanet characterization tool
- determine radii as a function of wavelength (transmission spectra)
- lots of data available, efforts could be rewarding!

INTRODUCTION - IDEAS & AIMS

Rayleigh Scattering

- study how RS can be used to understand the structure & evolution of super-Earths & mini-Neptunes
- assume RS as the dominant extinction process (as a first estimate)
- interpretation of transmission spectra

Stellar Conditions

- take stellar radiation / XUV-heating of upper atmosphere into account

→ develop a method that allows one to determine the reference radius of planetary models from transit observations

→ optimize the method for CHEOPS target selection (derive "real" reference radii, optimization for follow-ups)

METHODS

- 1. CoRoT White Light Curve Radii
 - get exact effective wavelength values + white light radii from the observation
- 2. Rayleigh Scattering (H₂) & Lecavelier des Etangs (2008a,b)
 - as a first estimation, assume that H_2 is responsible for RS
 - use white light radii \rightarrow get value for partial pressure & volume density
- 3. Stellar Conditions Code (Johnstone et al. 2015a,b)
 - calculate stellar wind conditions and XUV-Flux for host star
- 4. Hydrodynamic Code (Erkaev et al. 2013; Lammer et al. 2014)
 - calculate the theoretical upper atmosphere structure for CoRoT targets
- 5. CoRoT Multicolor Light Curve Radii
 - get radii from multicolor observations as a function of wavelength (3 codes)
 - comparison with theoretical results
 - recalculate partial pressures & theoretical upper atmosphere structure
- 6. Extend Theory to Mie Scattering if necessary

ISSUES

Things to consider...

- plague regions / stellar activity
- stellar conditions code (error of input values stellar age & activity)
- proper treatment of stellar limb darkening (CoRoT white light & colors)
- correction for observational contaminations
- find reliable errors (MCMC)
- target issues (CoRoT-24b, c)
- hazes & clouds in exoplanet atmospheres
- follow-ups needed!!!

First Results

L

Η

I ... Input Values L ... Lecavelier d. E. Output H ... Hydrocode Output

		CoRoT-20b	CoRoT-24b (1)	CoRoT-24b (2)	CoRoT-24c
	λ [nm]	670	690	690	690
	R _T [R _{Jup}]	0.84 +/- 0.04	0.33 +/- 0.04	0.33 +/- 0.04	0.44 +/- 0.04
	M [M _{Jup}]	4.24 +/- 0.23	< 0.018	< 0.0095	0.088 +/- 0.035
	T [K]	1002 +/- 24	1070 +/- 140	1070 +/- 140	850 +/- 80
	g [m/s²]	148.95 +/- 16.33	< 4.1	< 2.2	11.27 +/- 4.93
	H [km]	24.14 +/- 2.7	< 937.16	< 1775.75	270.72 +/- 121.04
	P _{z=0} [mbar]	636.85 +/- 5	< 210.13	< 206.9	253.01 +/- 7
	β	- >2000	11	5.9	52
	R _{dis} /R _T		3	3.3	1.5
	R _{xuv} /R _T	-	4	4	1.3

Absorption Depths of RS: $AD(\lambda)$

 $\frac{8H}{R_{\rm p}}\ln\frac{\lambda}{\lambda_0}$

 $AD = AD_0 (1 -$

T & q_{xuv} - Profiles (Hydrocode)

dotted line ... CoRoT-24b (1); dashed line ... CoRoT-24b (2)

Pressure Profiles (Hydrocode)

solid line ... CoRoT-24c dotted line ... CoRoT-24b (1); dashed line ... CoRoT-24b (2)

P-z Profile for CoRoT-20b in comparison

CONCLUSIONS

- exact effective wavelengths (λ_0) need to be known
 - \rightarrow determine the partial pressure (P₀) at reference radius (R_T)
- white light reference radii of targets

→ do not correspond to a 1 bar pressure level

- mass of CoRoT-20b
 - → assume *hydrostatic* regime
 - \rightarrow no radius anomalies expected
- have to question stellar conditions / parameters of CoRoT-24
- In the second second

SUMMARY & OUTLOOK

- Rayleigh / Mie Scattering in atmospheres of transiting low mass planets
- initially analyze existing CoRoT data
 careful evaluation of CoRoT chromatic light curves
 - need exact effective wavelength
- take XUV heating of upper atmosphere into account
- develop method that allows to determine reference radii of planetary models from transit observations
- optimize method for CHEOPS target selection

Thank you for your attention

Effective Altitudes $z(\lambda)$

