Breaking the compositional degeneracy in the a-M-R-t plane.

Christoph Mordasini

Y. Alibert, W. Benz, K. Dittkrist, P. Molliere, S. Jin, G. Marleau

Close-in low-mass planets

- Very frequent: ~50% of solar like star (1<R/R_⊕<4 & P<100 days; Kepler)
- From RV: ~40% with M<30 M_⊕ inside 50 days (HARPS)
- Large diversity in composition. Some w. low density (H/He envelopes of ~1-10% for R/R $_{\oplus}$ > 1.6), some Earth-like

Formation mechanism?

Formation mechanism?

	Strictly in situ	Migration then final assembly	Large scale migration after assembly from a>a
Core composition	Rocky	Rocky - Icy potentially radial composition gradient	lcy
Primordial H/He (post-formation)	Yes (w/o isolation) No (w isolation)	Yes (w/o isolation) No (w isolation)	Yes

Knowing the bulk composition (H/He; rocky, icy, mixed) would be of very high interest for formation theory

Formation beyond iceline: ice mass fraction 50-75%

Hansen & Murray 2012, 2013, Chiang & Laughlin 2013, Raymond & Cossou 2013, Ida & Lin 2013, Lee et al. 2014, Schlichting 2014, Hands et al. 2014, Cossou et al. 2014, Chattarjee & Tan 2014, Ohigara et al. 2015, Inamdar & Schlichting 2015,

Degenerate M-R relation

Formation of close-in low-mass planets: in situ vs. migration Formation beyond iceline: ice mass fraction 50-75%

Knowing the bulk composition (H/He; rocky, icy, mixed) would be of very high interest for formation theory

Even for only the 4 standard "ingredients" of planetary interiors (iron, silicates, ices, H/He) the M-R is degenerate:

⇒reduce the number of unknown "ingredients" to 2 for some planets

H/He: Evolution with atmo. escape

M_{star}=1 M_{sun} Isothermal Type I rate x 0.1. Cold accretion. 1 embryo/disk, f_{opa}=0.003

Bern model: Core-accretion population synthesis

Self-consistent formation and evolution (cont. & cooling) with XUV-driven atmo. escape.

Fraction of Envelope Lost

Not much evolution after >~100 Myr

Bare core triangle a-M is hardly affected

The evaporation valley

cf Lammer et al. 2003, Baraffe et al. 2004, Erkaev et al. 2007, Murray-Clay et al. 2009, Lopez et al. 2013, Owen & Wu 2013

Systematic investigation

Systematic study: a=0.01-0.6 AU; M_{core}=0.2-20 M_{Earth}

Initial H/He envelope mass: $M_{\text{enve}} = 0.03 \times \left(\frac{M_{\text{core}}}{M_{\oplus}}\right)^2 M_{\oplus}$

cf. Rogers 2014

The solid-gas transition

Iron mass fraction ?

Fe mass fraction

mass %	Corot-7	Kepler-93	Kepler-10	Sun	Sun (L03)	
Η	74.83	75.09	74.77	75.06	74.91	
He	23.61	23.69	23.61	23.68	23.77	
Н	0.80	0.55	0.90	0.50	0.51	
CH	0.32	0.37	0.36	0.37	0.29	
Fe	0.13	0.09	0.09	0.12	(0.17)	
MgSiO	0.30	0.07	0.16	0.25	(0.27)	
Mg	0	0.14	0.09	0.03		
SiO	0.005	0	0	0		
Ζ	1.56	1.21	1.61	1.26	1.32	
f	29.4	29.1	25.6	31.0	38.0	32.6
f	70.6	70.9	74.3	69.0	62.0	

Inferring the ice mass fraction

Planets in bare core triangle • no H/He • assume fixed Earth-like Fe:Silicate fraction for *all* planets (firon=1/3) => can invert $M, R \Rightarrow \rho_{nom} \Rightarrow f_{ice,nom}$

preliminary simplistic analysis: Future work -use actual stellar composition -better treatment of errors -several interior, EOS & evap. models

The ice mass fraction, revealed (?)

Obs: Weiss & Marcy 2014

The ice mass fraction, revealed (?)

	Μ	R	f _{ice}	
55 Canc e	8.3±0.4	1.99±0.07	0.03 - 0.20, - 0.34	Orbital migration
K-98 b	3.6±1.6	1.99±0.22	0.23- 0.94 - ≥1	Atmospheric
K-48 b	3.9±2.1	1.88±0.10	0.11-0.62 -> ≥1	spectra!

55 Canc e: Demory et al. 2011: 20% ice, but see Demory et al. 2015, Madhusudhan et al. 2012, Alibert submitted

<u>Statistics</u>: 57 planets (solar-like host, M>0)

- a) 29 outside bare core triangle
 - -3 unconstrained
 - -0 constrained rocky
 - -11 constrained with H/He
 - -15 constrained with H/He or ice
- b) 28 in the bare core triangle
 - -18 unconstrained
 - -7 constrained rocky
 - -3 constrained with ice (but...)

Impact of M and R errors

Reducing the errors

Statistics: 57 planets (solar-like host, M>0) a) 29 outside bare core triangle -3 unconstrained -0 constrained rocky -11 constrained with H/He -15 constrained with H/He or ice b) 28 in the bare core triangle -18 unconstrained

-7 constrained rocky

-3 constrained with ice (but...)

Effect of reducing error in radial velocity measurement $\sigma_{K-RV} [m/s]$

	WM14	0.6 m/s	0.3 m/s	0.1 m/s
unconstrained outside	3	2	1	0
unconstrained inside	18	14	9	7

Conclusions

Ice mass fraction of close-in low-mass planets: key constraint

•M-R degeneracy reduced by taking into account

temporal dimension
orbital distance
} atmospheric escape

chemical composition of host star

Simple analytical models for

transition gaseous-solid planet: Mbare / Rbare

All start with primordial H/He. No outgassing.

Ink stellar photospheric composition - planetary iron mass fraction • Earth like values expected for Corot-7b, Kepler-10b, Kepler-93b

Simplistic analysis of bulk composition of WM14 sample

- 3 planets might have massive ice shells: orbital migration. But...
- Much more refined analysis necessary

•Useful for analysis of input of M and R errors: low $\sigma_{K-RV} < 1$ m/s needed