Collisional crafting of compact planetary systems

Alexander James Mustill Melvyn B Davies Anders Johansen in prep.

Lund Observatory

Single-planet systems are common in Kepler data

- Can they derive from the population of triple-planet systems?
- No (Lissauer et al. 2011; Johansen et al. 2012):
 - Triple systems are *too flat* to create enough single-transits
 - Triple systems are *too stable* to reduce to single-planet systems through internal instabilities on astronomically interesting timescales

Single-planet systems are common in Kepler data

- Can they derive from the population of triple-planet systems?
- No (Lissauer et al. 2011; Johansen et al. 2012):
 - Triple systems are *too flat* to create enough single-transits
 - Triple systems are *too stable* to reduce to single-planet systems through internal instabilities on astronomically interesting timescales
- Can we find some other way of dynamically reducing the multiplicity of multi-planet systems...?

Preliminary work on dynamically decreasing system multiplicity

- *Exogenous dynamics:* Inner planets are affected by dynamics of (mostly undetected) outer system
 - scattering between massive gas giants (*cf* Sean Raymond papers on effects on terrestrial planet formation)
 - Kozai cycles on outer planets driven by binary companion

Preliminary work on dynamically decreasing system multiplicity

- *Exogenous dynamics:* Inner planets are affected by dynamics of (mostly undetected) outer system
 - scattering between massive gas giants (*cf* Sean Raymond papers on effects on terrestrial planet formation)
 - Kozai cycles on outer planets driven by binary companion
- *Endogenous dynamics:* Inner planets are unstable by themselves
 - triples are stable (Johansen *et al.* 2012)
 - what about higher multiplicities (Pu & Wu 2015)
 - collision velocities are high close to star, so collisions may be destructive (Volk & Gladman 2015)

- Add an unstable outer system to a *Kepler* close-in triple
- Not implausible scenario:
 - Scaled-down Solar System
 - Kepler-48 (Marcy et al. 2014): 2M₁ planet at 980 days
 - Kepler-90 (Rowe *et al.* 2014; Cabrera *et al.* 2014): 0.7, 1.0 R_J at 211, 332 days

• Kepler-18 plus 2 Jupiters and 2 Neptunes at 1au and beyond

Alexander J Mustill — 3rd *CHEOPS Science Workshop* — *Madrid* — 18th June 2015

• But not always effective...

Alexander J Mustill — 3rd *CHEOPS Science Workshop* — *Madrid* — 18th June 2015

Exogenous dynamics: the Kozai case

• Kepler-18 plus Jupiter at 3au plus inclined binary at 30 au

Alexander J Mustill — 3rd CHEOPS Science Workshop — Madrid — 18th June 2015

Exogenous dynamics: early-stage statistics

	0 planets	1 planet	2 planets	3 planets
Kepler-18 + scattering planets at 3 au	14 11%	8 6%	4 3%	102 80%
Kepler-18 + scattering planets at 1 au	9 28%	6 19%	1 3%	16 50%
Kepler-18 + Kozaied Jupiter	22 69%	1 3%	7 22%	2 6%
Kepler-18 + Kozaied Neptune	2 6%	4 13%	3 9%	23 72%
Kepler-58 + scattering planets at 3 au	5 16%	2 6%	2 6%	23 72%

Exogenous dynamics: early-stage statistics

	0 planets	1 planet	2 planets	3 planets
Kepler-18 + scattering planets at 3 au	14 11%	8 6%	4 3%	102 80%
Kepler-18 + scattering planets at 1 au	9 28%	6 19%	$\frac{1}{3\%}$	16 50%
Kepler-18 + Kozaied Jupiter	22 69%	1 3%	7 22%	2 6%
Kepler-18 + Kozaied Neptune	2 6%	4 13%	3 9%	23 72%
Kepler-58 + scattering planets at 3 au	5 16%	2 6%	2 6%	23 72%

Endogenous dynamics: more multiplicity

- Kepler triples are very stable (Johansen et al. 2012)
- But higher-multiplicity systems are much closer to the edge of stability (Pu & Wu 2015; Volk & Gladman 2015)
- Volk & Gladman note that collision velocity

•
$$v_{coll} \sim e v_{kep}$$

is greater than planets' escape speed, so collisions will be highly destructive

• However, study of systems' dynamical evolution under destructive collision prescriptions is yet to be performed...

Alexander J Mustill — 3rd CHEOPS Science Workshop — Madrid — 18th June 2015

Endogenous dynamics: more multiplicity

- Take Kepler-18 and add extra planets *in between* the extant ones—quick instability guaranteed
- Explore how outcome depends on collision prescription
 - perfect merging
 - perfect destruction
 - semi-realistic: remove half of mass of colliding bodies
 - (future): realistic collision outcomes and remnant masses (*e.g* Leinhardt & Stewart 2012)

• Perfect merging: 5 planets reduce to 2 or 3:

Alexander J Mustill — 3rd CHEOPS Science Workshop — Madrid — 18th June 2015

• Perfect destruction: 5 planets reduce to 1 or 3:

Alexander J Mustill — 3rd CHEOPS Science Workshop — Madrid — 18th June 2015

- Semi-realistic prescription: remove half of mass on collision
- extreme mass ratios still merge
- efficient at making single detectable planets

Alexander J Mustill — 3rd CHEOPS Science Workshop — Madrid — 18th June 2015

• Preliminary statistics (all based on padded Kepler-18):

	0 planets	1 planet	2 planets	3 planets	4 planets	5 planets
Perfect merging	0	0	8 25%	24 75%	0	0
Perfect destruction	0	14 88%	0	2 13%	0	0
Semi- realistic	6 14%	24 55%	9 20%	4 9%	0	1 2%

• Preliminary statistics (all based on padded Kepler-18):

	0 planets	1 planet	2 planets	3 planets	4 planets	5 planets
Perfect merging	0	0	8 25%	24 75%	0	0
Perfect destruction	0	14 88%	0	2 13%	0	0
Semi- realistic	6 14%	24 55%	9 20%	4 9%	0	1 2%
Many singles made!						

Conclusions

- Single planets are common
- Possible to dynamically reduce multiplicity through exogenous or endogenous means
 - scattering/Kozai in outer systems
 - collisions in packed inner systems
- Efficiency of each channel to be investigated...which one dominates?
- ...formation effects could also play a role (*e.g.*, Izidoro *et al.* 2015)

• Vindication of the Mustill et al. 2015 set-up

Alexander J Mustill — 3rd *CHEOPS Science Workshop* — *Madrid* — 18th June 2015

• But not always effective...

Alexander J Mustill — 3rd *CHEOPS Science Workshop* — *Madrid* — 18th June 2015

- 1000.00 2 Neptunes ejected **1** Jupiter ejected semi-major axis, pericentre, apocentre [au] 00.00 10.00 1 Jupiter 1.00 survives, highly eccentric **3** inner planets 0.10 survive, very little eccentricity 0.0 excitation 10⁵time [yr]10⁶ 10³ 10⁴ 10^{7}
- Less effective if outer planets more distant from star...

Alexander J Mustill — 3rd *CHEOPS Science Workshop* — *Madrid* — 18th *June 2015*

Exogenous dynamics: the Kozai case

• Multiplicity reduction still possible

Alexander J Mustill — 3rd *CHEOPS Science Workshop* — *Madrid* — 18th June 2015