

Transiting exoplanets are useful laboratories.

For a transiting exoplanet, we can directly observe **planet size + orbit + mass + atmosphere.**

painted by Zach Berta-Thompson, adapted from original by Tim Brown, circa 2000

TESS Transiting Exoplanet Survey Satellite

NASA Explorer Mission

searching the whole sky to find hundreds of small exoplanets amenable to detailed characterization

Ricker et al., JATIS, (2014)

TESS Transiting Exoplanet Survey Satellite

PI = George Ricker Massachusetts Institute of Technology

Science Center MIT + Harvard/Smithsonian CfA

collaboration including:

NASA Goddard, NASA Ames, Orbital Sciences, STScI, SAO, MPIA-Germany, Las Cumbres Observatory, Geneva Observatory, OHP-France, University of Florida, Aarhus University-Denmark, Harvard College Observatory, Vanderbilt University

Ricker et al., JATIS, (2014)

13.7 day High Earth Orbit (2:1 lunar resonance)

Ricker et al. including Berta-Thompson (2014)

4 cameras

Ricker et al. including Berta-Thompson (2014)

8

ņ

 $\overline{}$

10.5 cm diameter, 24°x24° field of view

Ricker et al. including Berta-Thompson (2014)

deep depletion CCDs 600-1000nm bandpass

Ricker et al. including Berta-Thompson (2014)

Ricker et al. (2014); Sullivan et al. (accepted & on arxiv), both including Berta-Thompson

Ricker et al. (2014); Sullivan et al. (accepted & on arxiv), both including Berta-Thompson

Ricker et al. (2014); Sullivan et al. (accepted & on arxiv), both including Berta-Thompson

TESS camera testing at MIT (risk-reduction unit)

TESS camera testing at MIT (risk-reduction unit)

for example: starting to measure the PSF, to verify optics

also: characterizing detector, flat-fielding, QE... ...we need a light stable light source! TESS takes a new exposure once every **2 seconds**

1 degree

simulated images by Zach Berta-Thompson

DOWNLINK: 20-second asteroseismic cadence for 1500 stars

for the brightest seismology targets

1 degree

simulated images by Zach Berta-Thompson

DOWNLINK: **2-minute** cadence for 200,000 stars

prioritizing detectability of small planets

1 degree

simulated images by Zach Berta-Thompson

one camera:

one

DOWNLINK: **30-minute** cadence for full frame images

Cosmic Ray Impact for 120s Exposures

Cosmic Ray Impact for 120s Exposures

Cosmic Ray Impact for 120s Exposures

simulate Galaxy filled stars + planets orbiting those stars + instrumental noise sources + survey sky coverage + astrophysical false positives + transiting planet detections

a predicted catalog of TESS planets

Peter Sullivan et al. (accepted to ApJ & on arxiv)

Sullivan et al. including Berta-Thompson (accepted)

Sullivan et al. including Berta-Thompson (accepted)

TESS is on schedule for launch **August 2017.**

After ~two months of commissioning, the TESS sky survey will begin about **November 2017.**

Data will be released publicly
 four months*

from when it is collected.

*hopefully faster!

- •CHEOPS has 9X the collecting area of TESS.
- •TESS observes 60% of the sky for only 27 days.
- •For orbital periods >3 days, one CHEOPS transit could surpass TESS' phased precision.

Conclusions

- TESS will launch in 2017.
- TESS will observe...
 1500 store at 20s as de
 - 1500 stars at 20s cadence,
 - 200,000 stars at 2m, most of the sky at 30m.
- TESS will find hundreds of new easy-to-observe small planets transiting nearby stars.

