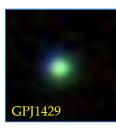
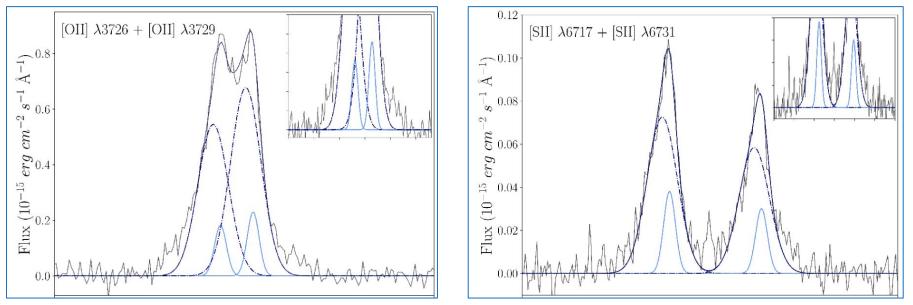

A Line Measuring library:

Vital Fernández Ricardo Amorín, Christophe Morisset Verónica Firpo

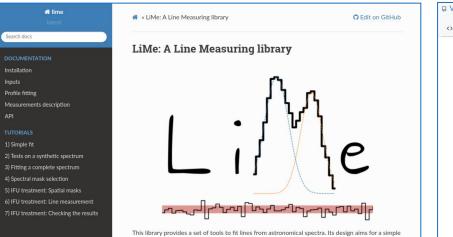
Why do we need another package?

• There are already (better) tools available:





kapteyn astronomical institute


Chemodynamics analysis

- *Hogarth et al.* 2020 compare the distinctive gas chemistry and kinematics from the emission of Green Pea galaxy GPJ1429.
- A successful analysis requires a careful track of the gaussian components to avoid conflicting results.

Where to start?

This lind ary provides a set of rooms of it lines from astronomical spectra, its design alms for a simple usage for both single lines and Big Data observations. The library provides tools for masking, detecting and fitting lines, as well as storing the results. This workflow should be useful for both the posterior analysis of the spectrum chemistry and kinematics.

⊙ Issues 11 Pull requests ⊙ Actions 🗄 Projects	🖽 Wiki 💮 Security 🗠 Insights 🔅 Settings	
P master - lime / examples /		Go to file Add file -
Vital-Fernandez LiMe 0.5.8 bug corrections		16370c2 3 days ago 🕚 Histor
Images	LIMe 0.1.8. Marta release: Examples update, cleaned reports, xlsx log	5 months ag
ample_data	LiMe 0.5.5 new source file type_params.txt with the measurements vari	13 days ag
example1_simple_fit.py	LiMe 0.3.8. MaskInspector updated, only detected lines in line detect	last mon
example2_synthetic_spectrum_fit.py	LiMe 0.5.0 documentation inputs and profile fitting	24 days ag
example3_fit_with_external_files.py	LIMe 0.5.8 bug corrections	3 days ag
example4_interactive_mask_plots.py	LiMe 0.5.5 new source file type_params.txt with the measurements vari	13 days ag
example5_IFU_masking.py	LiMe 0.4.2. tutorial 5 and tutorial 6, log_to_HDU renaming,	29 days ag
example6_IFU_fitting.py	LiMe 0.4.2. tutorial 7	28 days ag
example7_IFU_results.py	LIMe 0.5.5 new source file type_params.txt with the measurements vari	13 days ag
example8_fitting_absorptions.py	LiMe 0.4.2. tutorial 5 and tutorial 6, log_to_HDU renaming,	29 days ag
example9_profile_fitting.py	LiMe 0.5.0 documentation inputs and profile fitting	24 days ag
tests mplcursor.py	LiMe 0.3.9. Optional libraries are optional, plots with black profile	last mon

Readthedocs: <u>lime-stable.readthedocs.io/</u>

Github: github.com/Vital-Fernandez/lime

Where to start?

TUTORIALS

- Simple fit
 Tests on a synthetic spectrum
 Fitting a complete spectrum
 Spectral mask selection
 IFU treatment: Spatial masks
- 6) IFU treatment: Line measurement

7) IFU treatment: Checking the results

U

This library provides a set of tools to fit lines from astronomical spectra. Its design aims for a simple usage for both single lines and Big Data observations. The library provides tools for masking, detecting and fitting lines, as well as storing the results. This workflow should be useful for both the posterior analysis of the spectrum chemistry and kinematics.

			sample_data		
dez/lime Public		ß	example1_simple_fit.py	-	
sues 11 Pull requests O petions	Projects 🛄 V	۵	example2_synthetic_spectrum_fit.py		
Vital-Feynandez LiMe 0.5.8 bug corrections		ß	example3_fit_with_external_files.py		
·· Images	LIMe	ß	example4_interactive_mask_plots.py		
i sample_data	LiMe			-	
example1_simple_fit.py	LiMe	D	example5 IFU masking.py		
example2_synthetic_spectrum_fit.py	LiMe				
example3_fit_with_external_files.py	LIMe	P	example6 IFU fitting.py		
example4_interactive_mask_plots.py	LiMe	-	ondiniphoo_in o_inding.py		
example5_IFU_masking.py	LiMe	P	example7 IELL results py		
example6_IFU_fitting.py example7_IFU_results.py	LiMe		example7_IFU_results.py		
example8 fitting absorptions.py	LiMe 0.4.2	. tutorial 5 and	tutorial 6, log to HDU renaming, 29 days		
example9_profile_fitting.py			n inputs and profile fitting 24 days		
tests mplcursor.pv	LiMe 0.3.9	. Optional libra	ries are optional, plots with black profile last m	non	

Readthedocs: <u>lime-stable.readthedocs.io/</u> step by step explanations

П

Github: <u>github.com/Vital-Fernandez/lime</u> tutorials scripts and data

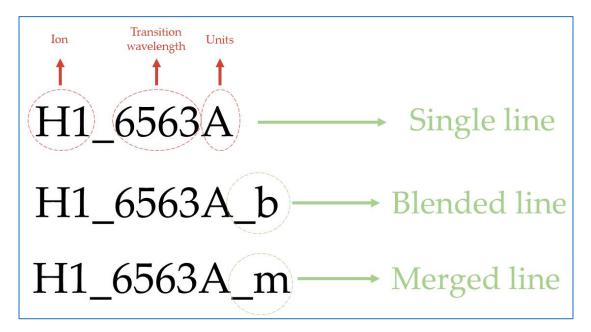
How to install?

lime-stable.readthedocs.io/en/latest/documentation/installation.html

LIME can be installed from its pip project page by running this terminal command:

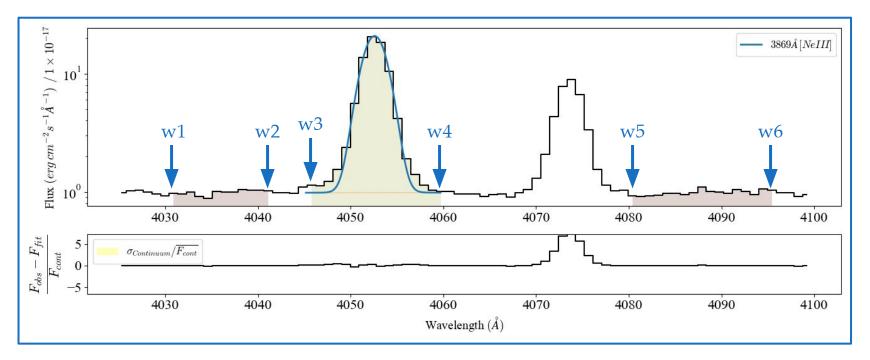
pip install lime-stable

To update the library to the latest version you can run the command:


pip install lime-stable --upgrade

How to install? (Dependencies)

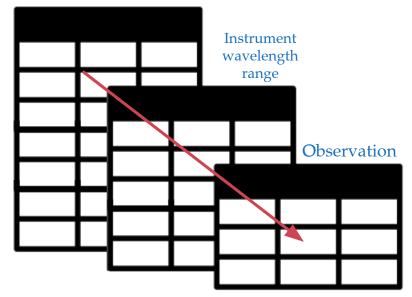
lime-stable.readthedocs.io/en/latest/documentation/installation.html


${\rm LIME}$ can be installed from its pip project page by running this	s terminal command:
pip install lime-stable	
To update the library to the latest version you can run the com	imand:
pi <mark>p i</mark> nstall lime-stableupgrade	
Numpy Pandas Matplotlib LmFit Astropy	Optional Specutils (peak detection) PyLatex (pdf outputs) openpyxl (.xlsx outputs) mplcursors (plot popups) asdf (asdf output)

LiMe inputs (1): Line name

- The user **must include** a line label for the fitting. The notation follows the style in PyNeb by *Luridiana and Morisset* (2014). This simplifies a posterior chemical analysis via the direct method or fitting from photoionization grids.
- The blended (_b) and merged (_c) suffixes provide the profile fitting policy.

LiMe inputs (2): Line mask



- The user **must include** a spectral mask for each line fitting. The mask design follows the Lick indices (see *Zhang et al* 2005): The line and two adjacent continuum bands.
- The mask consists in an **sorted** wavelength array (w1, w2, ..., w6) in the **rest frame**.

Loading the spectral masks

Open 🔻 ୲∓୲	~/Pychai	gp121903_E rmProjects/lime	R_mask.txt e/examples/san		Save ≡		×
	w1	w2	w3	w4	w5	wб	
H1_3704A	3685.00	3700.00	3700.45	3709.10	3758.00	3764.00	
02_3726A_m	3665.75	3694.26	3716.02	3743.70	3754.88	3767.50	
H1_3750A	3663.49	3697.71	3743.70	3755.82	3775.22	3792.04	
H1_3771A	3755.82	3763.43	3764.47	3776.58	3778.32	3791.62	
H1_3798A	3776.99	3787.91	3788.69	3804.26	3843.10	3858.63	
H1_3835A	3803.91	3814.15	3828.48	3844.05	3844.26	3852.83	
Ne3_3869A	3800.00	3820.00	3857.89	3880.39	3905.00	3950.00	
H1 3889A m	3806.90	3828.20	3880.39	3899.42	3905.00	3950.00	
H1_3970A	3932.80	3948.29	3956.51	3980.74	3984.86	3999.71	
He1_4026A	4003.60	4017.49	4018.80	4037.83	4038.20	4051.42	
S2_4069A	4046.00	4058.07	4063.78	4075.89	4080.64	4091.21	

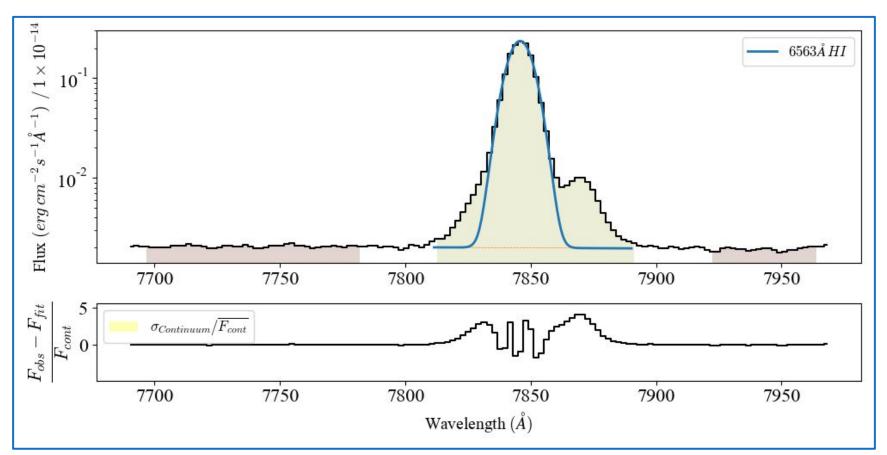
All favourite lines

•The spectral mask are stored as tables with the line name its transition and contina bands

•These can be loaded using the *line.load_lines_log()* function

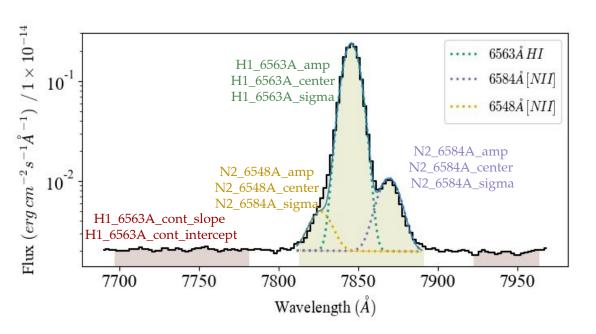
•In the ideal scenario, each object has its own spectral mask.

•You can use the *line.MaskInspector()* class to manually them (tutorial 4)


LiMe inputs: Example (tutorial 1)

```
import numpy as np
import lime
# Load the spectrum data
wave, flux = np.loadtxt('GP121903', unpack=True)
z_gp = 0.19531
normFlux_gp = 1e-14
# Declare lime Spectrum object
gp_spec = lime.Spectrum(wave, flux, redshift=z_gp, norm_flux=normFlux_gp)
gp_spec.plot_spectrum(frame='rest', spec_label='GP121903')
```

LiMe inputs: Example (tutorial 1)


```
# Perform the fitting
line = 'H1_6563A'
mask = np.array([6438.03, 6508.66, 6535.10, 6600.95, 6627.70, 6661.82])
gp_spec.fit_from_wavelengths(line, mask)
gp_spec.display_results()
```

LiMe inputs: Example (tutorial 1)

LiMe inputs (3): Fitting configuration

Profile fitting configuration: Parameters label

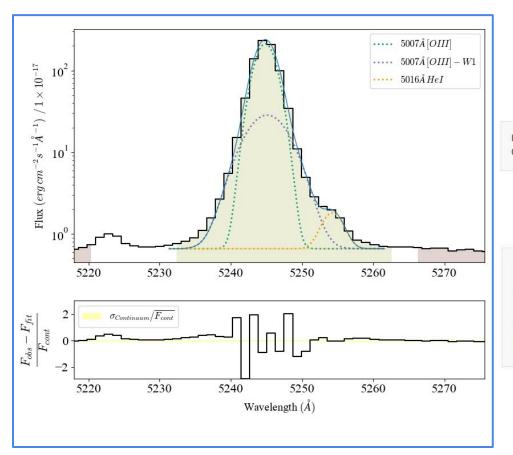
•Each Gaussian profile contributes with 3 parameters (amplitude, $\mu_{g'}$, σ_{g}). Additionally, the continuum slope and intercept are free unless otherwise specified

•Each parameter can be constrained with these arguments:

- value: initial guess
- min: minimum value
- max: maximum value
- expr: mathematical expression as a function of other parameter
- vary: fixed at the initial value (True, default)

•LiMe can provide reasonable initial conditions which respect your constraints, so you don't need to specify it.

•If one line parameter depends on another line parameter make sure to put it afterwards in the list:


H1_6563A_b = H1_6563A-N2_6584A-N2_6548A

Profile fitting configuration: Loading from file

Open 🔻 🕀	~/PycharmProjects/lime/examples/sample_data
[SH0C579_region0_line_fitting] 02_3726A_b = 02_3726A-02_3729A-H1_3721A-H1_3734A H1_3889A_m = H1_3889A-HeI_3889A Ar4_4711A m = Ar4_4711A-HeI_4713A H1_4861A_b = H1_4861A-H1_4861A_W1 03_4959A_b = 03_4959A-03_4959A_W1 03_5007A_b = 03_5007A-03_5007A_W1-HeI_5016A H1_6563A_b = H1_6563A-H1_6563A_W1-N2_6584A-N2_654 02_7319A_b = 02_7319A-02_7330A S3_9531A_b = S3_9531A-H1_9548A	18A
02_3726A_kinem = 02_3729A H1_3712A_kinem = H1_3734A 02_3726A_cont_slope = vary:False 02_3726A_cont_intercept = vary:False H1 4861A w1 sigma = expr:>2.0*H1 4861A sigma	
H1_4861A_w1_amp = expr:<10.0*H1_4861A_amp	
03_4959A_w1_sigma = expr:>2.0*03_4959A_sigma 03_4959A_w1_amp = expr:<10.0*03_4959A_amp 03_5007A_w1_sigma = expr:>2.0*03_5007A_sigma 03_5007A_w1_amp = expr:<10.0*03_5007A_amp He1_5016A_center = min:5014,max:5018 He1_5016A_sigma = min:1.0,max:2.0	
H1_6563A_w1_sigma = expr:>2.0*H1_6563A_sigma H1_6563A_w1_amp = expr:<10.0*H1_6563A_amp H1_6563A_cont_slope = vary:False H1_6563A_cont_intercept = vary:False N2_6548A_amp = expr:N2_6584A_amp/2.94 N2_6548A_kinem = N2_6584A S3_9531A_cont_slope = vary:False S3_9531A_cont_intercept = vary:False	
	<pre>[SH0C579_region0_line_fitting] 02_3726A_b = 02_3726A-02_3729A-H1_3721A-H1_3734A H1_3889A_m = H1_3889A-HeI_3889A Ar4_4711A m = Ar4_4711A-HeI_4713A H1_4861A_b = H1_4861A-H1_4861A_w1 03_4959A_b = 03_4959A-03_4959A_w1 03_5007A_b = 03_5007A-03_5007A_w1-HeI_5016A H1_6563A_b = H1_6563A-H1_6563A_w1-N2_6584A-N2_654 02_7319A_b = 02_7319A-02_7330A S3_9531A_b = S3_9531A-H1_9548A 02_3726A_kinem = 02_3729A H1_3712A_kinem = H1_3734A 02_3726A_cont_slope = vary:False 02_3726A_cont_intercept = vary:False 02_3726A_cont_intercept = vary:False H1_4861A_w1_sigma = expr:>2.0*H1_4861A_sigma H1_4861A_w1_amp = expr:<10.0*H1_4861A_amp 03_4959A_w1_sigma = expr:>2.0*03_4959A_sigma 03_4959A_w1_amp = expr:<10.0*03_5907A_sigma 03_5007A_w1_sigma = expr:>2.0*H1_6563A_amp He1_5016A_center = min:5014,max:5018 He1_5016A_sigma = min:1.0,max:2.0 H1_6563A_w1_amp = expr:<2.0*H1_6563A_amp H1_6563A_cont_intercept = vary:False N2_6548A_amp = expr:N2_6584A_amp/2.94 N2_6548A_kinem = N2_6584A S3_9531A_cont_slope = vary:False</pre>

onfin filo cfo

Profile fitting configuration: Inequality expressions

•The "expr" attribute allows the user to constrain parameter using a mathematical and/or logical expression:

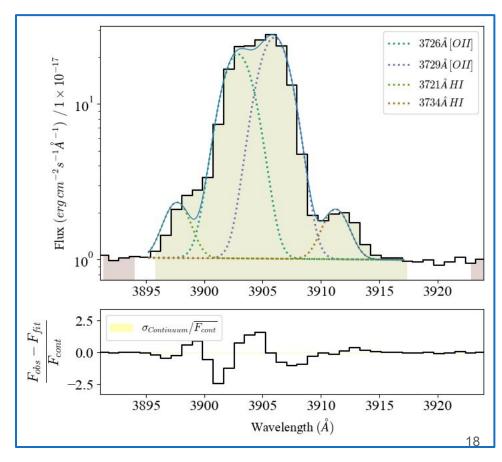
H1_4341A_b = H1_4341A-03_4363A 03_4363A_sigma = expr:H1_4341A_sigma if H1_4341A_amp/2. > 100 else 1.25

•The "expr" can also be used to constrain a parameter as an inequality of another parameter:

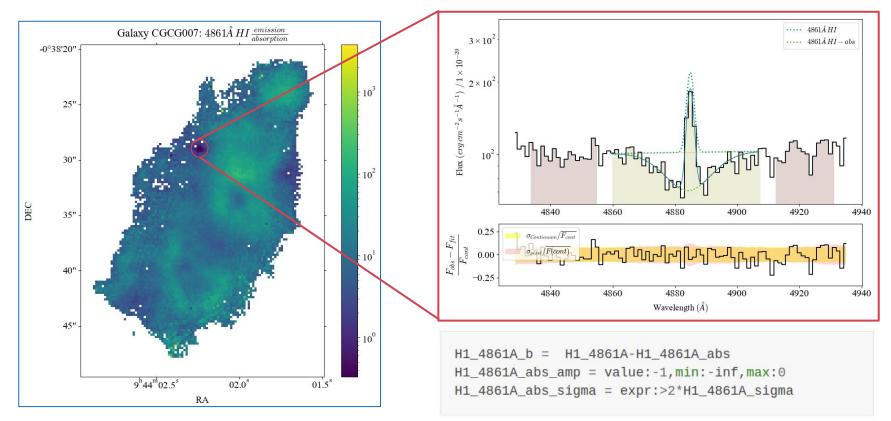
O3_5007A_b = O3_5007A-O3_5007A_W1-He1_5016A O3_5007A_w1_sigma = expr:>2.0*O3_5007A_sigma O3_5007A_w1_amp = expr:<10.0*O3_5007A_amp He1_5016A_center = min:5014,max:5018 He1_5016A_sigma = min:1.0,max:2.0

•Values for the gaussian center are assumed to be in the rest frame and converted to the observed.

Profile fitting configuration: Importing kinematics


•The "_kinem" suffix will import line kinematics from another line (both $v_{r'} \sigma_{vel}$). Respecting the wavelength frame units:

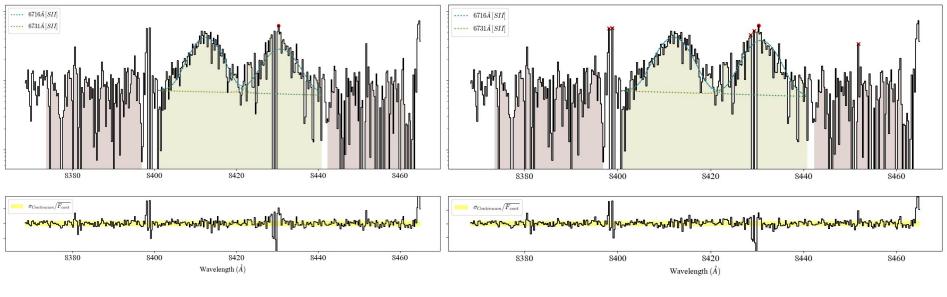
$$\begin{array}{c} \sigma_A = \sigma_B \left(km/s \right) \\ v_{r,A} = v_{r,B} \left(km/s \right) \end{array} \longrightarrow \begin{array}{c} \sigma_A = \sigma_B \cdot \frac{\lambda_A}{\lambda_B} (\text{\AA}) \\ \mu_A = \mu_B \cdot \frac{\lambda_A}{\lambda_B} (\text{\AA}) \end{array}$$


•If the parent line is within the current blended group, the kinematics are **binded**. If the parent line is outside the group the kinematics are **fixed**.

```
02_3726A_b = 02_3726A-02_3729A-H1_3721A-H1_3734A
02_3726A_kinem = 02_3729A
H1_3721A_kinem = H1_6563A
H1_3734A_kinem = H1_6563A
```

```
02_3726A_cont_slope = vary:False
02_3726A_cont_intercept = vary:False
```

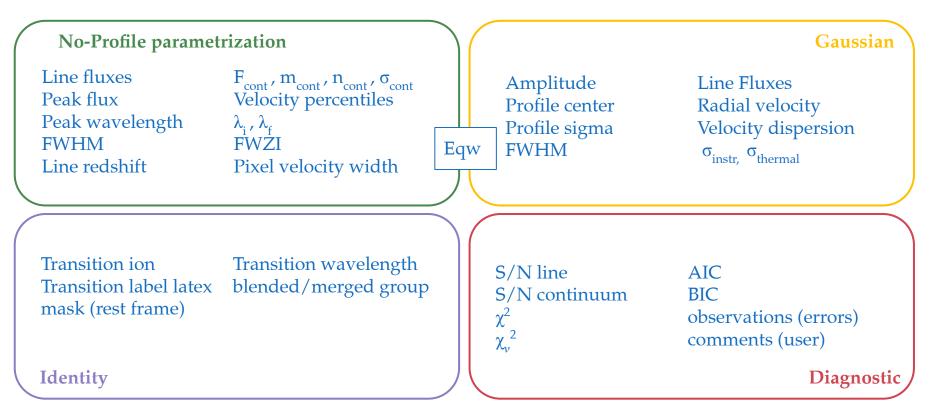

Profile fitting configuration: Absorptions



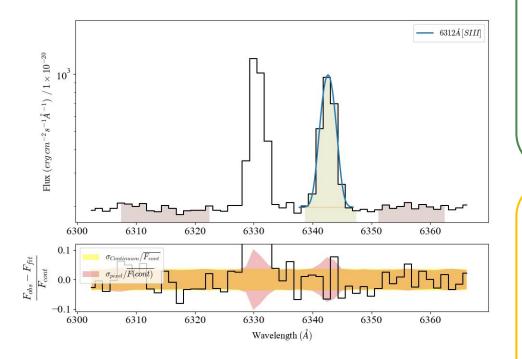
•The default emission line configuration can be switch to False in the .fit_from_wavelengths function

Profile fitting configuration: Pixel masking

•Adding the "_mask" suffix to the line label allows the user to define regions to exclude from the fitting


S2_6716A_b = S2_6716A-S2_6731A S2_6716A_b_mask = 8398-8399,8428.5-8430,8451.7

Without mask


With mask

LiMe measurements

• The measurements physical/mathematical description can be found at the online documentation

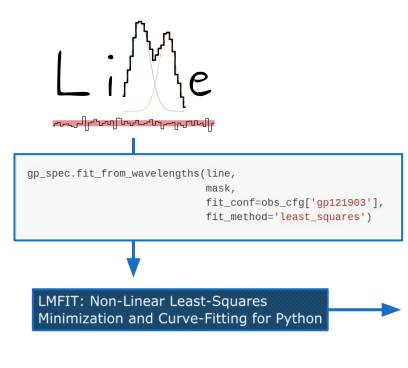
Line fluxes calculation

•A 1000 steps Monte Carlo integration.

•The pixel uncertainty is taken from the error spectrum provided by the user. Otherwise, a uniform value is computed from the adjacent continua bands flux standard deviation.

•The array mean integrated flux is taken as the nominal value and the standard deviation as the uncertainty.

Integrated

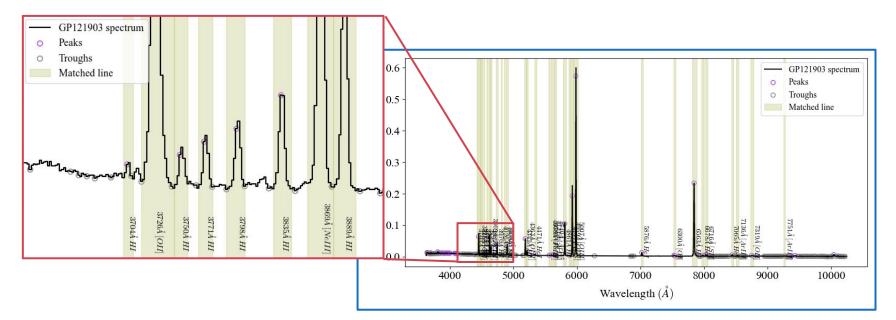

A multi-Gaussian profile minimization .
The Gaussian flux is calculated from the theoretical relation:

$$F_{i,g} = A_i \cdot \sqrt{2\pi} \cdot \sigma_i$$

•The minimizing algorithm models the uncertainty of the parameters. In most cases this is the 1σ error

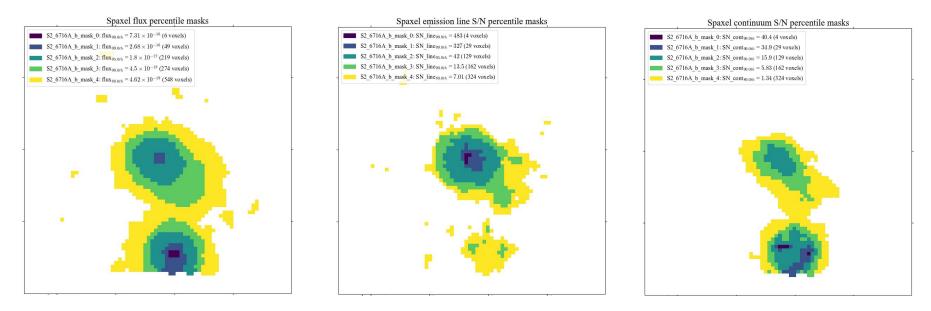
Gaussian

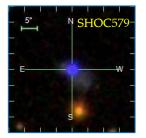
Minimizing algorithm


•LmFit by *Newville et al.* (2014) manages the minimizing algorithm call.

- Most reliable 'leastsq': Levenberg-Marquardt (default) -'least squares': Least-Squares minimization, using Better for fittings Trust Region Reflective method with inequalities 'differential evolution': differential evolution 'brute': brute force method 'basinhopping': basinhopping 'ampgo': Adaptive Memory Programming for Global Optimization 'nelder': Nelder-Mead 'lbfgsb': L-BFGS-B 'powell': Powell 'cg': Conjugate-Gradient 'newton': Newton-CG 'cobyla': Cobyla 'bfgs': BFGS 'tnc': Truncated Newton 'trust-ncg': Newton-CG trust-region 'trust-exact': nearly exact trust-region 'trust-krylov': Newton GLTR trust-region 'trust-constr': trust-region for constrained optimization 'dogleg': Dog-leg trust-region 'slsqp': Sequential Linear Squares Programming 'shgo': Simplicial Homology Global Optimization 'dual annealing': Dual Annealing optimization
 - 'emcee': Maximum likelihood via Monte-Carlo Markov Chain

Line detection

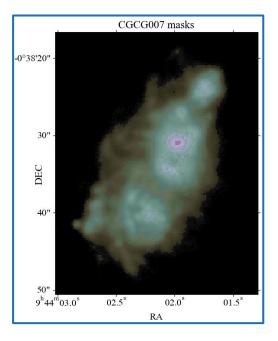

• For large datasets individual masks might not be an option. In this case you can use the *lime.Spectrum.match_line_mask()*


• The function fits a polynomial iteratively to normalize the continuum and determines the peaks location using the *find_lines_derivative()* function from SpecUtils by *Earl et al.* (2022)

Spatial masks (Tutorial 5)

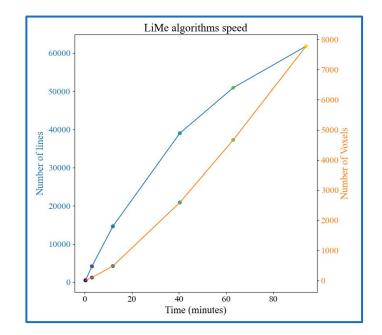
• In IFU datasets, you may want to adjust your fittings according to the data spatial behaviour. You can use the *line.spatial_mask_generator* to generate them:

• For a manual mask spaxel adjustment you can use the *line.CubeInspector()* class.



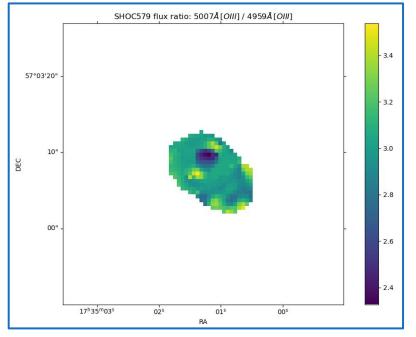
Saving/loading the log results

Restrict the log output measurements



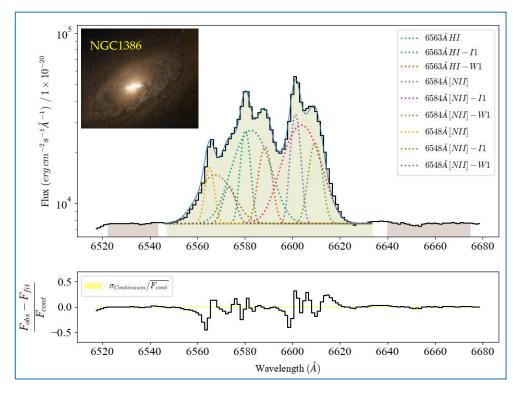
Algorithm profiling

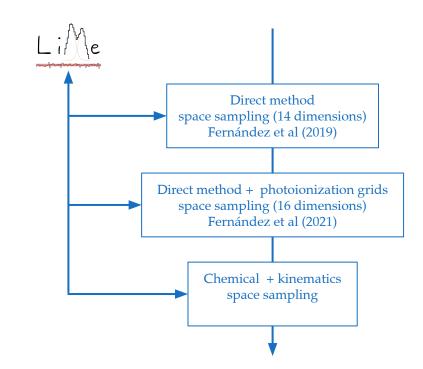
- •The mean line number goes from from 45 to 4 lines per voxel.
 - •Output (.fits) file size is 150MB, 19 kb per voxel



The lines cube analysis took 93 minutes
The averaged line measurement time is 0.08 seconds
The averaged voxel measurement time is 1.2 seconds

Making the parameter maps (Tutorial 7)

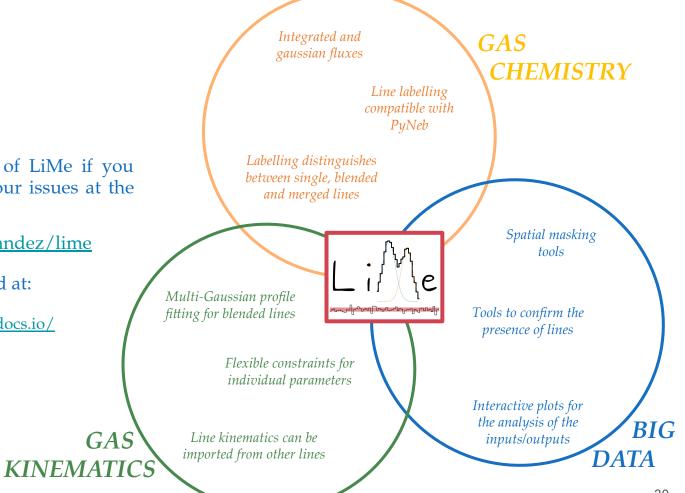

• If the line logs are stored as a *.fits* file, you may use the function *line.save_param_maps()* to export spaxel measurements as *.fits* images for a list of lines and parameters:



Final remarks

•As the number of dimensions increases beyond 10, traditional algorithms may not be efficient enough to explore the parameter space.

•We are working in new models and tools using neural network samplers to handle the situation. LiMe will provide a user friendly standard for the inputs.


Conclusions

•This is the beta release of LiMe if you want to test please share your issues at the github:

github.com/Vital-Fernandez/lime

•More details can be found at:

https://lime-stable.readthedocs.io/

Thank you for your time!

Where to find what you need

To install or update the library go to the installation page. Download the sample data folder and try to run the examples.

For a quick start go to the **Tutorials** section. These are organized by increasing complexity and they provide a working knowledge of the library algorithms.

To learn more about the library design check the inputs and profile fitting documentation. The reference manual for the library functions is found at the API.

M The outputs physical description can be found in the measurements documentation.

I am, gentlefolk, yours faithfully May 18, 2022