Local Luminous InfraRed Galaxies as the most compact galaxies among low- and high-z system observed at sub-kpc scale with ALMA

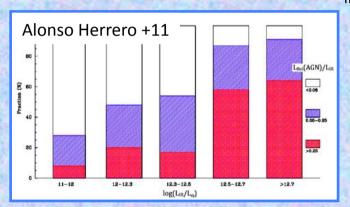
Enrica Bellocchi

Centro de Astrobiología (CSIC-INTA)

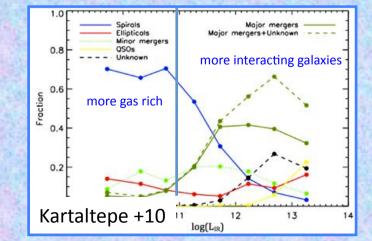
Collaborators: <u>M. Pereira-Santaella</u>, <u>L. Colina</u>, <u>Á. Labiano</u>, <u>M. Sánchez García</u>, <u>A. Alonso-Herrero</u>, <u>S. Arribas</u>, S. García-Burillo, <u>M. Villar-Martín</u>, D. Rigopoulou, T. Díaz-Santos, S. Cazzoli, A. Usero

1 kpc

EXCELENCIA MARÍA DE MAEZTU


18-20 May 2022, XIII ESTALLIDOS WORKSHOP

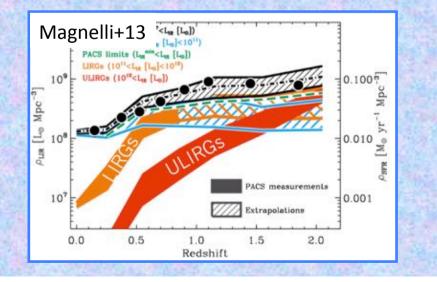
(Ultra) Luminous Infrared Galaxies


LIRG: $10^{11} \le L_{IR} < 10^{12} L_{\odot}$

ULIRG: $10^{12} \le L_{IR} < 10^{13} L_{\odot}$

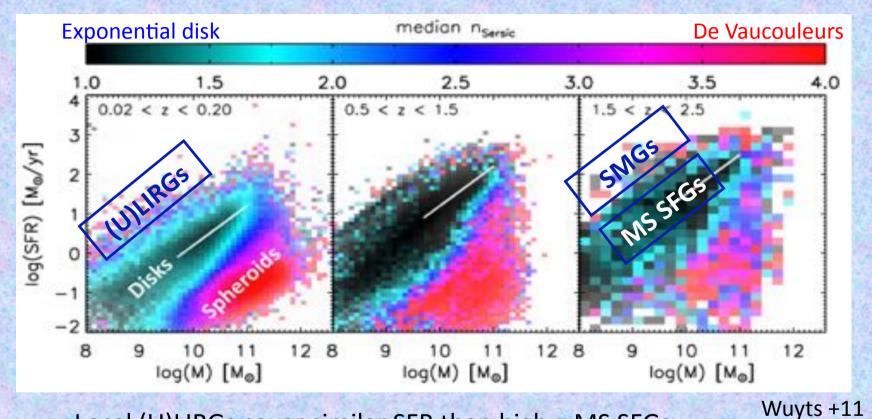
✓ AGN contribution increases with L_{IR}

✓ More Interacting galaxies at high L_{IR}



host the most extreme SF events in the present universe

 IR emission mainly powered by Star formation and/or AGN



Relevant contributors to the whole past SF
 z > 1 but they are rare locally

(U)LIRGs: Clues about galaxy evolution

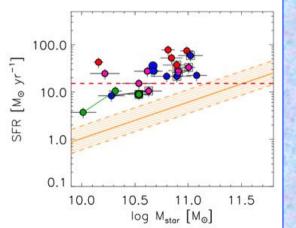
Stellar mass – SFR relation: the Main Sequence

Local (U)LIRGs cover similar SFR than high-z MS SFGs

- To clarify the interpretation of high-z data using high S/N & high spatial resolution
- To constrain different evolutionary scenarios

The project:

New CO(2-1) observations of a representative sample of local LIRGs at high spatial resolution (<100 pc) from ALMA to provide detailed measurements of their molecular size

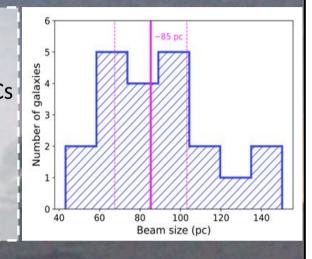

Main goals:

- to test, for the first time, the relation among the spatial extent (R_{eff}) of the different tracers (*molecular, stellar and ionized gas*) in a sample of local LIRGs;
- to compare their sizes with those observed *locally in* Spirals, ETGs and ULIRGs as well as in high-z systems (MS SFGs and SMGs)

The LIRG sample

- Representative sample of 24 individual local (z< 0.02) LIRGs observed with ALMA
- $L_{IR} = 10^{11} 10^{11.7} L_{\odot}$ (covers a uniform distribution)
- ◆ Different ionization types (most of them HII ; a few Seyfert, LINERs)
 → ~1/3 show the presence of AGN, which does not dominate the galaxy emission
- Different dynamical phases (morphological types: isolated galaxies "0", pre-colaescence phase "1" and mergers "2", classified using Spitzer/IRAC and HST images) + kinematic information from Hα (Arribas+12, Bellocchi +13, +16) and CO maps ("0RD", "0PD", "1" and "2")
- 2/3 of the sample show the presence of interaction or past merger activity in their morphology and/or kinematics
- LIRGs lie <u>above</u> Main-Sequence (MS) with

 M_{star} = 10^{10}-10^{11} M_{\odot} and SFR~30 M_{\odot}/yr



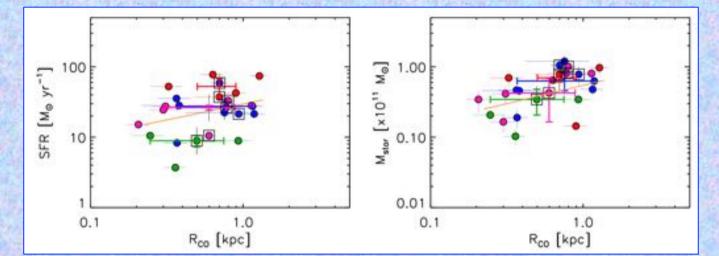
The observations:

- ALMA (band 6)

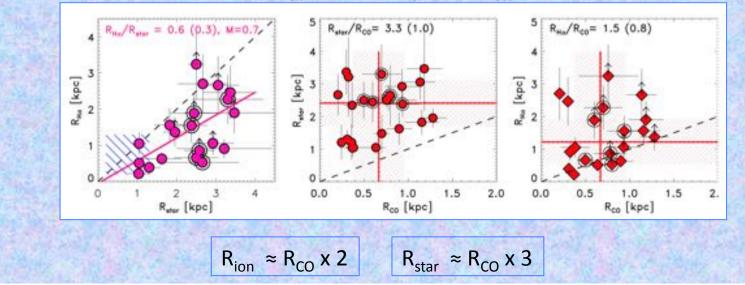
CO(2-1) and 1.3 mm (247 GHz) continuum:

✓ synthetized (FWHM) beam =0.2"-0.4" (~90 pc) → similar to GMCs
 ✓ Total integration time per source 20-30 min
 ✓ FOV = 5-8 kpc² up to 10-17 kpc² (mosaic, NGC3256)
 ✓ Sensitivity (1σ) → CO(2-1) 0.4-1.2 mJy/beam
 247 GHz 0.02-0.1 mJy/beam

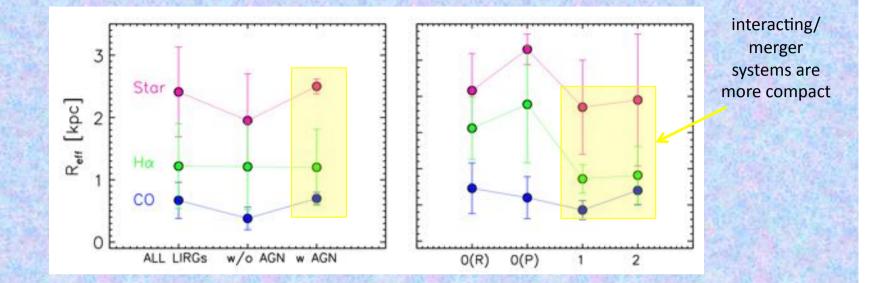
Ancillary data & method


- VIMOS/VLT: ionized (H α) size (Arribas et al. 2012)
- 2MASS (K band): stellar size (Bellocchi et al. 2013)

 \rightarrow R_{eff} estimation using the Curve-of-growth (CoG) method \rightarrow R_{circ} =V(A/2)/ π

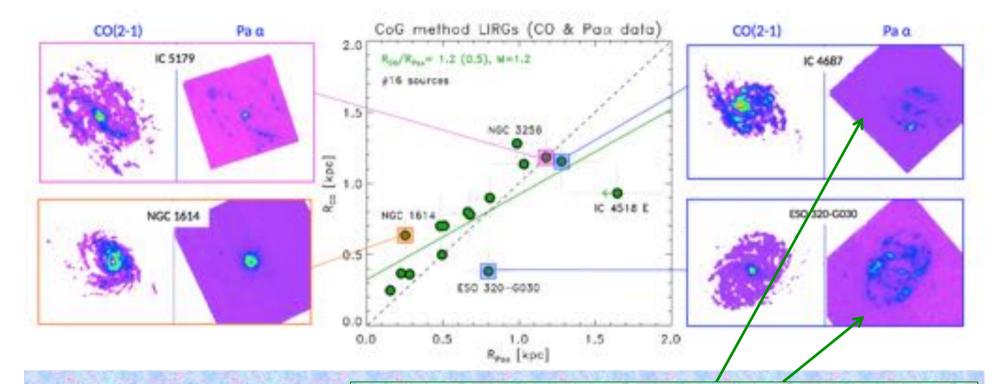

Results in local LIRGs:

SFR-R_{CO} & M_{star}- R_{CO}



Slight tendency for the galaxies with higher SFR and stellar mass to have larger R_{co} (R_{co} < 1 kpc)

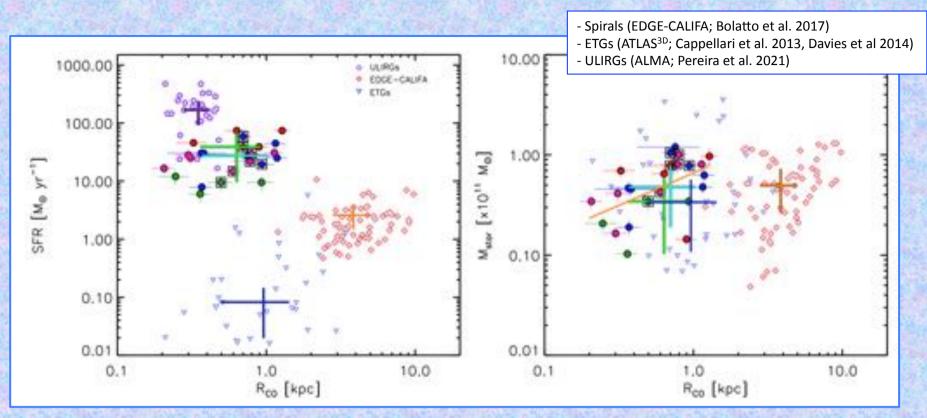
R_{co} versus R_{ion} and R_{star}


The impact of <u>AGN</u> on the molecular gas

Sample (1)	# (2)	R _{CO} [kpc] (3)	R _{cont} [kpc] (4)	R _{star} [kpc] (5)	R _{Ha} [kpc] (6)	
All LIRGs	24	$0.66 \pm 0.33 \ (0.67 \pm 0.29)$	$0.37 \pm 0.31 (0.29)$	2.21 ± 0.81 (2.41 ± 0.72)	1.42 ± 0.89 (1.22 ± 0.68)	
LIRGs w/o AGN	17	$0.64 \pm 0.38 (0.38 \pm 0.18)$	$0.37 \pm 0.34 (0.24)$	$2.12 \pm 0.88 (1.95 \pm 0.75)$	$1.48 \pm 0.97 (1.21 \pm 0.69)$	
LIRGs w AGN	7	$0.72 \pm 0.14 \ (0.70 \pm 0.10)$	$0.38 \pm 0.20 (0.40)$	2.44 ± 0.62 (2.50 ± 0.12)	1.29 ± 0.71 (1.20 ± 0.60)	
0 RD	8	$0.73 \pm 0.34 (0.73 \pm 0.35)$	$0.46 \pm 0.40 (0.38)$	2.00 ± 0.83 (2.08 ± 0.50)	$1.59 \pm 1.00 \ (1.56 \pm 0.43)$	
0 PD	7	$0.59 \pm 0.34 (0.60 \pm 0.29)$	$0.31 \pm 0.23 (0.31)$	$2.58 \pm 0.65 (2.65 \pm 0.21)$	$1.64 \pm 1.03 (1.89 \pm 0.81)$	
1	4	$0.51 \pm 0.30 (0.43 \pm 0.13)$	$0.34 \pm 0.35 (0.18)$	$1.96 \pm 0.89 (1.85 \pm 0.65)$	$0.86 \pm 0.28 \ (0.86 \pm 0.20)$	
2	5	$0.77 \pm 0.35 (0.70 \pm 0.20)$	$0.37 \pm 0.26 (0.26)$	$2.22 \pm 0.99 (1.95 \pm 0.91)$	$1.14 \pm 0.71 (0.91 \pm 0.40)$	

→ LIRGs with AGN show larger (median) molecular radii by x2 wrt w/o AGN: maybe due to the presence of high surface brightness CO emission in extra-nuclear regions

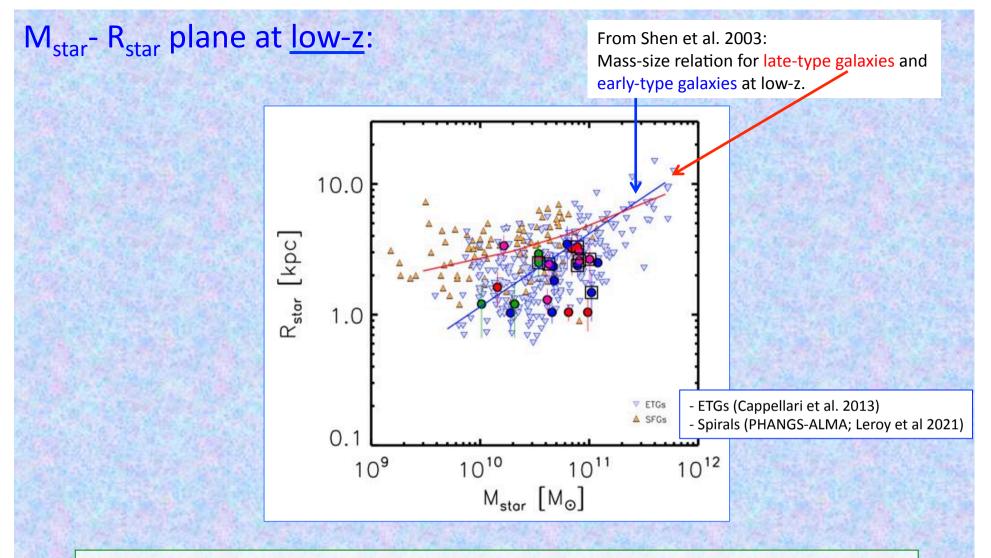
The impact of extinction


High extinction $A_v \sim 3$ mag in the central regions in Pa α maps

- \rightarrow Tight correlation between the molecular and ionized gas: $R_{CO} \sim R_{Pa\alpha} = 0.75$ kpc
- \rightarrow Larger H α size than Pa α tracer are derived as a result of the extinction

Comparison with @low-z and high-z systems

Sample	z (2)	(3)	R _{CD} [kpc] (4)	R _{cont} [kpc] (5)	R _{star} [kpc] (6)	R ₁₅₀ [kpc] (7)	$[\times 10^{10}]M_{\odot}$ (8)	Ref. (9)
LIRG	≲0.02	24	0.66±0.33 (0.67)	0.37 ± 0.31 (0.29)	2.21 ± 0.81 (2.41)	1.42 ± 0.89 (1.37)	5.6 ± 3.2 (4.8)	this work
E-50	0.02	258 (49 (4)	$1.15 \pm 0.77 (1.01)$		2.74 = 1.98 (2.20)		7.3 ± 9.6 (3.8)	C13, D13, D14
Spiral	≤0.03	68	4.37 ± 1.97 (3.86)	***			7.6 ± 5.0 (7.1)	Bo17
MS SFG	< 0.004	90	111		3.45 ± 1.41 (3.40)	-	2.9 ± 2.8 (2.3)	L21
ULIRG	<0.17	30 (7, 23 (0))	$0.33 \pm 0.09 (0.36)$	$0.12 \pm 0.10 (0.11)$	3.45 ± 1.79 (3.80)	2.02 ± 1.55 (1.58)	4.0.0	P21, A12, B13
SFG	1-1.7	82 (72 ^{-(c)})	1.95 ± 1.23 (1.67)*		3.43 ± 1.49 (3.10)		7.9 ± 7.9 (5.7)	V20, Pu21
CSFG	2	45			$1.26 \pm 0.88 (1.00)$		8.1 ± 5.5 (10.8)	Ba14
SFG	2	3	4.90 ± 1.31 (5.50)	4.83 ± 4.18 (3.90)	6.93 ± 1.76 (7.90)		20.0 ± 9.5 (19.0)	K28
SFG	2	11		1.5 ± 1.2 (1.2)	3.7 ± 1.5 (3.1)		15.6 ± 6.2 (11.7)	T17
SFG	2	38			3.82 ± 2.20 (3.20)		$4.3 \pm 6.1 (2.2)$	F518
SFG	2	4		4.63 ± 0.65 (4.80)	5.20 ± 0.62 (5.20)	3.43 ± 1.46 (3.90)	12.7 ± 13.3 (8.3)	Cheng20
SFG	0.7-2.7	280			3.39 ± 1.63 (3.14)	4.26 ± 2.74 (3.43)		W29
SMG	2	14		1.74±0.51 (1.95)	5.03 ± 1.48 (4.75)		18.6±16.0 (13.2)	L19
STIG	2	1	6.6 ± 0.9	1.2 ± 0.1	6.4 ± 0.5	6.6 ± 0.9	20.0	Chen17
SMG	2	(6) m		1.82 ± 0.31 (1.85)		3.80 ± 1.40 (3.95)	16.0	Chen29
CSFG	2.5	6		0.90 ± 0.30 (0.81)	1.8 ± 0.93 (1.57)		100	Ba16
SFG	2-2.5	6	111	111	111	$4.18 \pm 1.58 (3.85)$	3.7 ± 2.5 (2.5)	H21
SMG	2.5	(4) m.	3.8 ± 0.1	1.7 ± 0.1	4.0 ± 2.0		8.0	CR18
SHG	2.5	(16) m	***	1.8 ± 0.2	4.1 ± 0.8		8.0 ± 1.0	H16
ge.	3-4	16			0.98 ± 0.86 (0.58)		8.2 = 3.9 (7.6)	\$15
SFG	3-4	14	33.8	1.1.1	2.79 ± 2.49 (2.09)		5.5 ± 2.0 (4.6)	\$15
SHG	4-5	4	-	$1.13 \pm 0.18 (1.05)$		100		G18
SFG	4-6	18 (7 (c))			0.98 ± 0.14 (0.94)		$0.9 \pm 0.5 (0.8)$	F20, Fa20

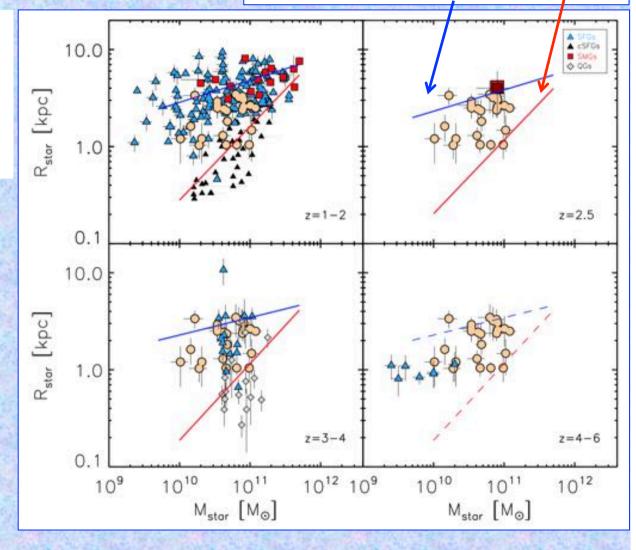

Comparison with local Spirals, ETGs and ULIRGs

- LIRGs have x6 smaller R_{CO} than local Spirals: R_{Spirals}~ R_{LIRGs} x 6;
- LIRGs show similar molecular size than ETGs (≤ 1 kpc): R_{ETGs} ~ R_{LIRGs};
- ULIRGs are x2 more compact than local LIRGs: R_{LIRGs} ~ R_{ULIRGs} x2 ;

 \rightarrow interactions may have an important role in the compaction of the molecular size

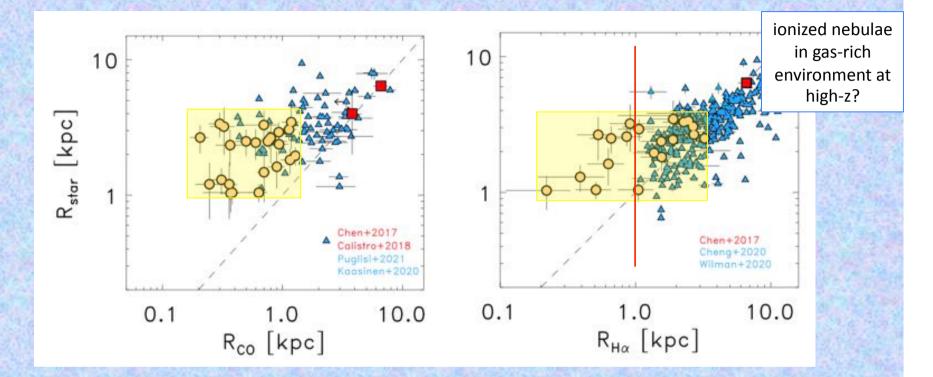
- LIRGs cover similar M_{star} than ETGs and Spirals (10¹⁰ - 10¹¹ M_{\odot}), but forming stars at rates a factor of \geq 10 above Spirals

LIRGs share similar M_{star} and R_{star} with ETGs (~2.5 kpc), being more compact (x1.5) and more massive (x2) than local Spirals (MS SFGs; Leroy+2021)


→ (U)LIRGs can transform gas-rich spirals into intermediate-stellar mass ETGs through merger events (Genzel+2001, Kawakatu+2006, Cappellari+2013a)

M_{star}- R_{star} plane at <u>high-z</u>:

From van der Wel et al. 2014: 3D-HST+CANDELS Mass-size relation for late-type galaxies and early-type galaxies at each corresponding z


Stellar mass in high-z systems in the range 10^{10} -2x 10^{11} M_{\odot} while their stellar host in high-z SFGs and SMGs:

- i) compact host (<1 kpc)
- ii) intermediate host (1-4 kpc)
- iii) extended host (4-10 kpc)

- LIRGs share similar stellar mass and stellar size with MS SFGs at z~1-4;
- SMGs stellar hosts are x3 more massive than local LIRGs and more extended (x2);

Different tracers among local LIRGs and high-z systems

- high-z SFGs tend to be close to the 1:1 relation between R_{star}- R_{CO};
- LIRGs appear as more <u>compact</u> than high-z SFGs in their <u>molecular</u> gas distribution (x2.6; x8 more compact than SMGs);

 R_{star} ~ R_{ion} in high-z systems: half of the LIRGs show R_{ion} < 1 kpc, while high-z SFG show R_{ion} > 1 kpc

→ High-z systems form stars in regions distributed over the entire galaxy host, while in LIRGs it is concentrated in smaller central regions

Conclusions

Local LIRGs

- The molecular gas distribution in LIRGs is compact ($R_{co} \sim 0.7$ kpc);
- their stellar host and ionized gas are larger (x3.5 and x2) than CO;

Comparison with local systems:

- LIRGs are <u>indistinguishable</u> from ETGs in the M_{star} - R_{star} plane: M_{star} (10¹⁰ 10¹¹ M_{\odot}),
- $\rm R_{star}$ (~2.5 kpc) and $\rm R_{CO}$ (~1 kpc);
- LIRGs show R_{star} more compact (x1.5) than local Spirals and x6 more compact R_{CO} than in local Spirals of similar M_{star}
- \rightarrow good agreement with the evolutionary scenario in which LIRGs can transform Spirals into ETGs

Comparison with high-z systems using different tracers:

- LIRGs share similar stellar mass and size with MS SFGs at z~1-4;
- high-z SFGs tend to be close to the 1:1 relation between R_{star} R_{CO} & R_{star} ~ R_{ion} (but not LIRGs...)
- → Regions of current SF (traced by the ionized gas) and of potential SF (traced by molecular gas) are substantially smaller in LIRGs

https://arxiv.org/pdf/2204.02055.pdf Bellocchi et al. 2022 (A&A)