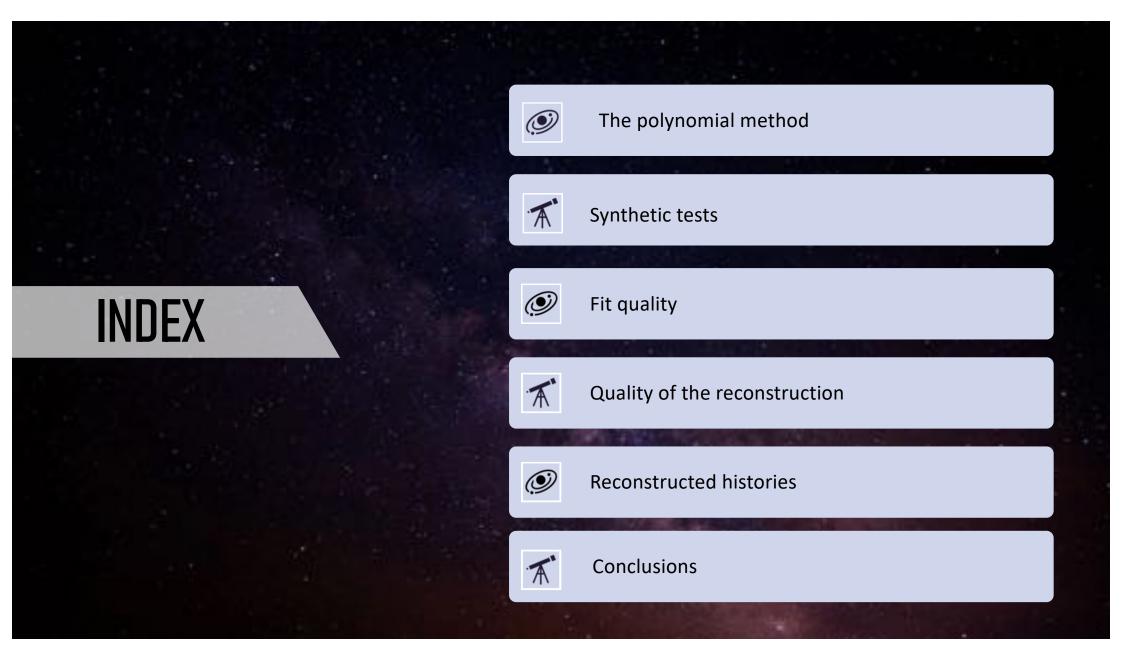
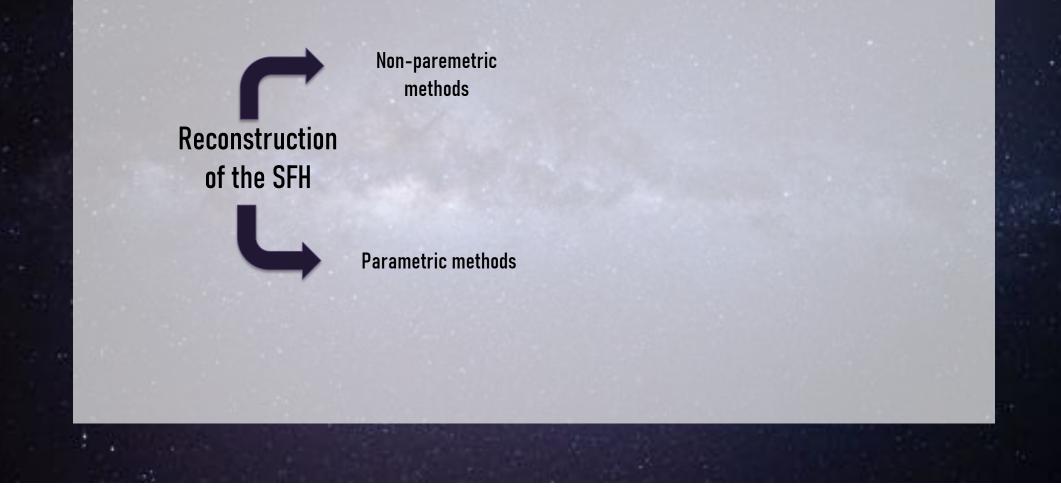
POLYNOMIAL EXPANSION OF THE STAR FORMATION HISTORY IN GALAXIES

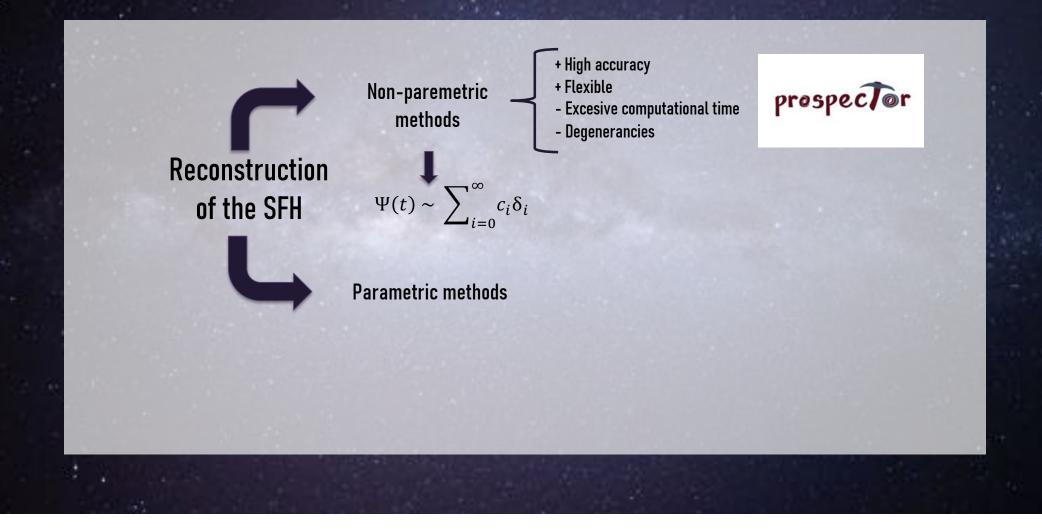
D. Jiménez-López, P. Corcho-Caballero, S. Zamora, Y. Ascasibar

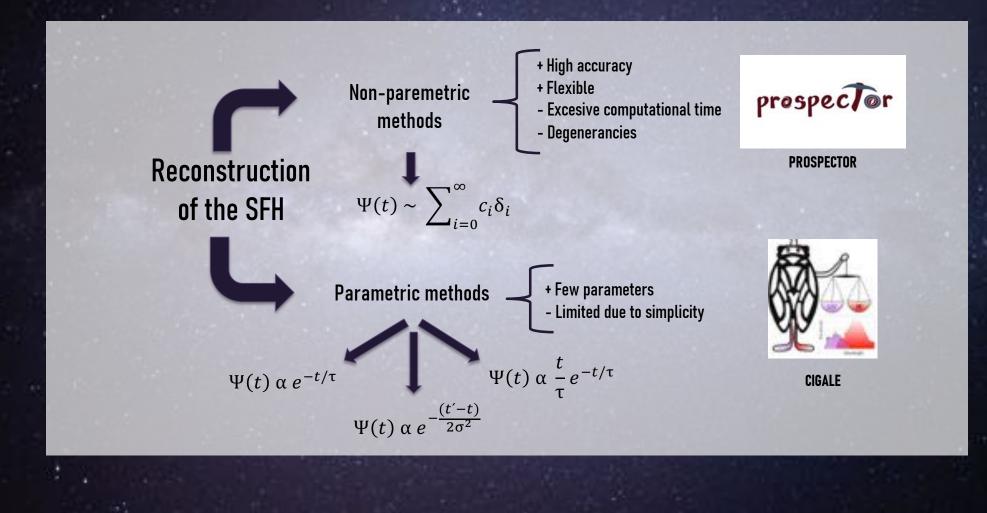
A&A, Forthcoming article, https://doi.org/10.1051/0004-6361/202141338



Reconstruction of the SFH









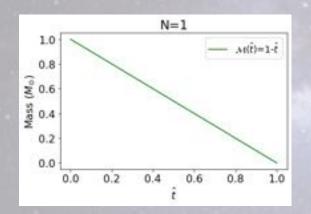


Figure 1. Primordial polynomial MFH asociated to each N-degree basis.

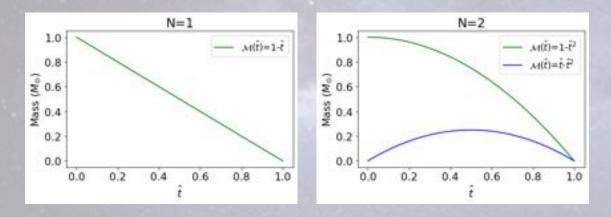


Figure 1. Primordial polynomial MFH asociated to each N-degree basis.

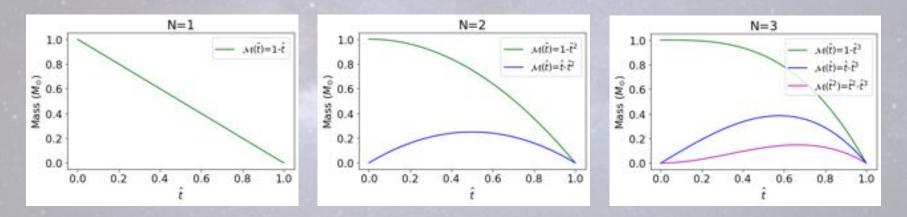


Figure 1. Primordial polynomial MFH asociated to each N-degree basis.

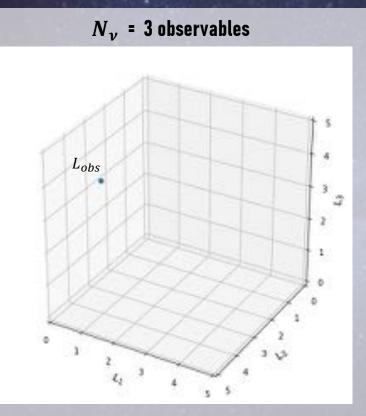


Figure 2. Luminosity coverage on the N_{ν} = 3 case

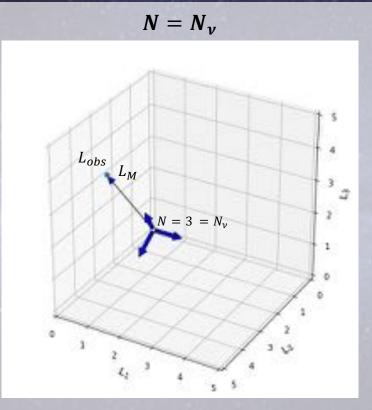


Figure 2. Luminosity coverage on the N_{ν} = 3 case

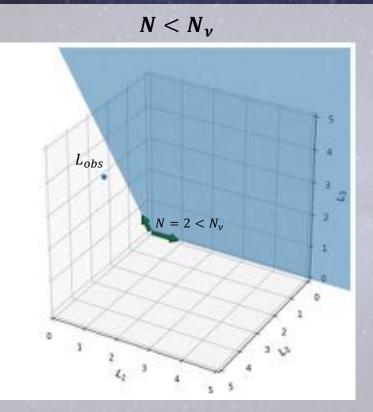


Figure 2. Luminosity coverage on the N_{ν} = 3 case

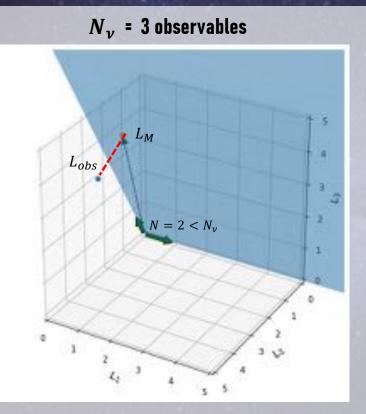
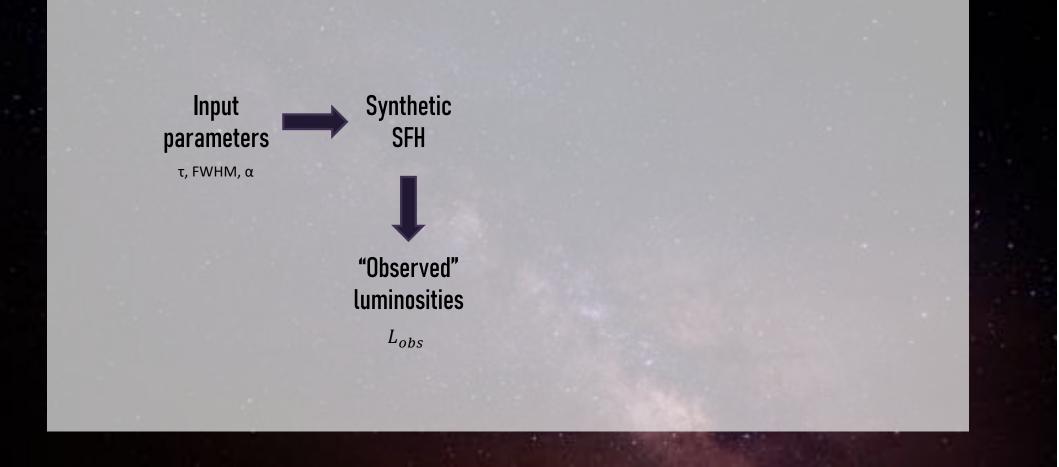
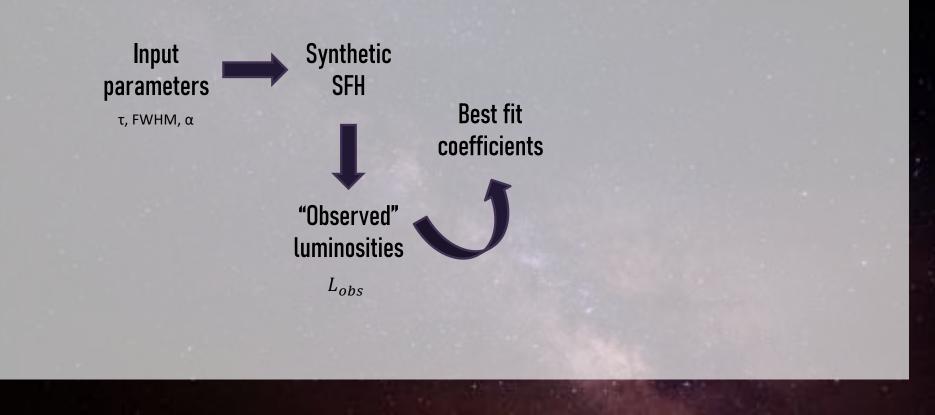
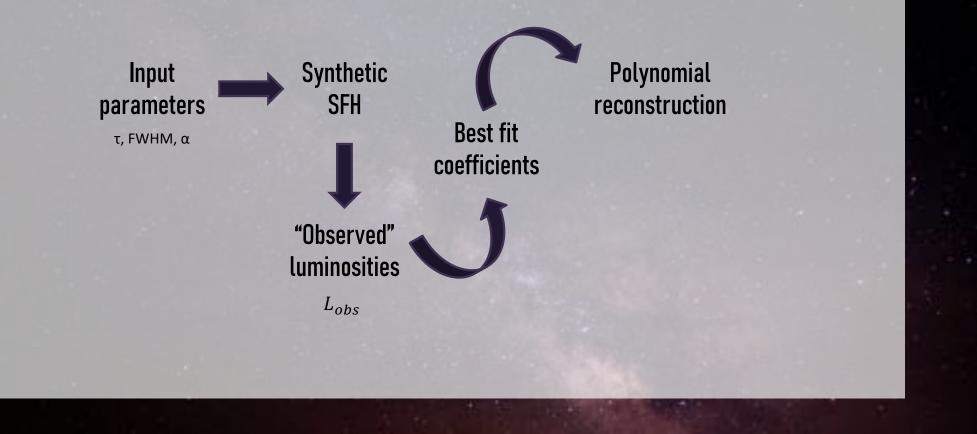


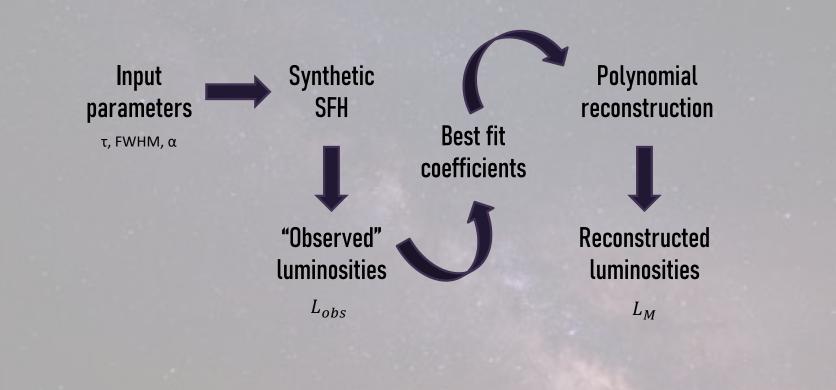
Figure 2. Luminosity coverage on the N_{ν} = 3 case

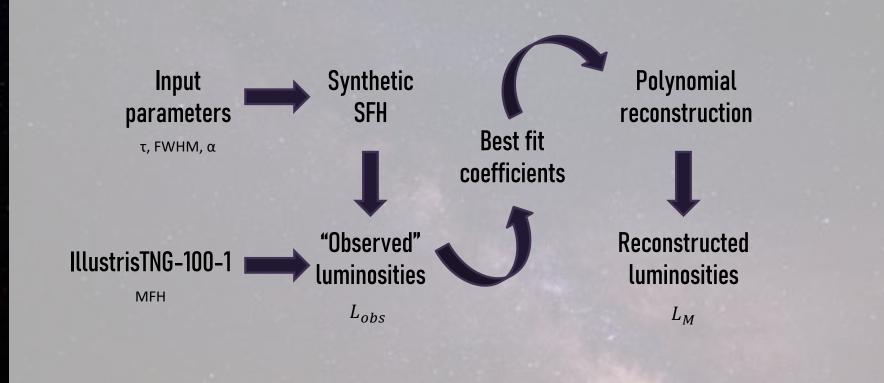
Synthetic SFH



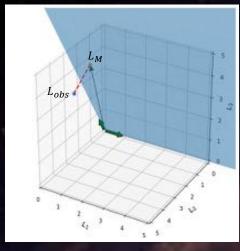


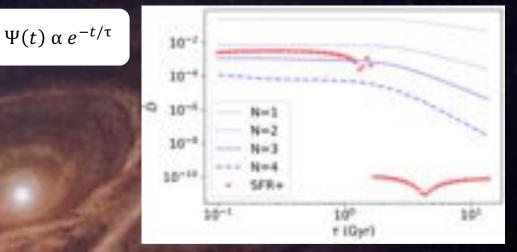






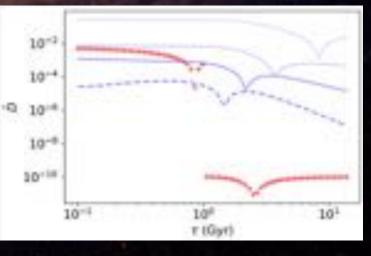
FIT QUALITY





$$\Psi(t) \alpha \frac{t}{\tau} e^{-t/\tau}$$

Figure 3. Best fitting normalized distances associated with each polynomial degree, N (blue lines) and the best positive-SFR fit (red crosses) for different characteristic times of the exponential (upper panel) and delayed- τ (bottom panel) analytical models.



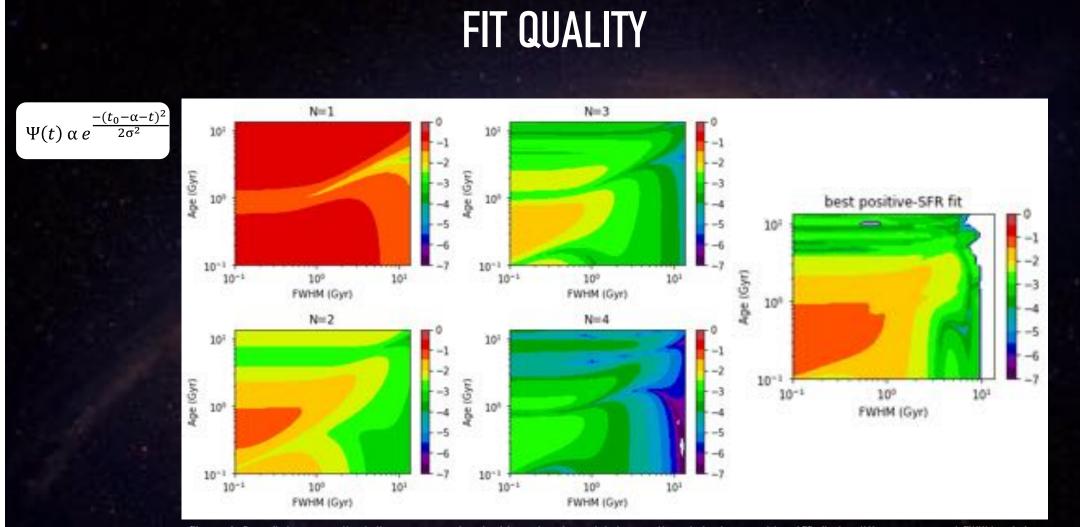
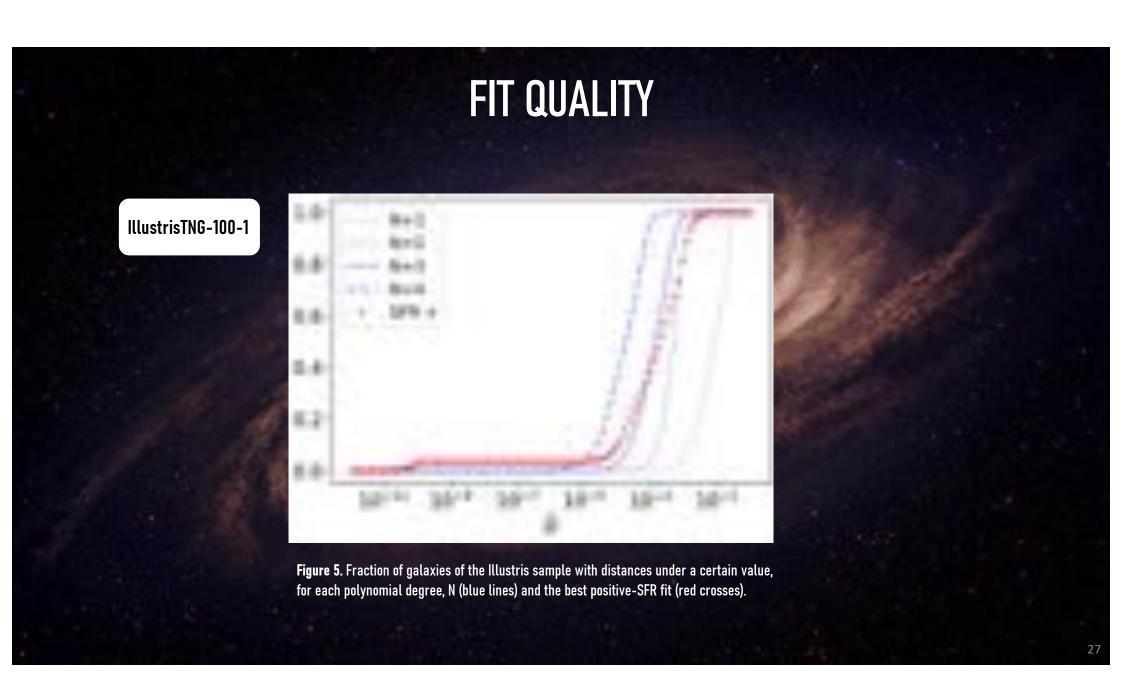


Figure 4. Best fitting normalized distances associated with each polynomial degree, N, and the best positive-SFR fit for different ages and FWHMs of the Gaussian synthetic SFHs.



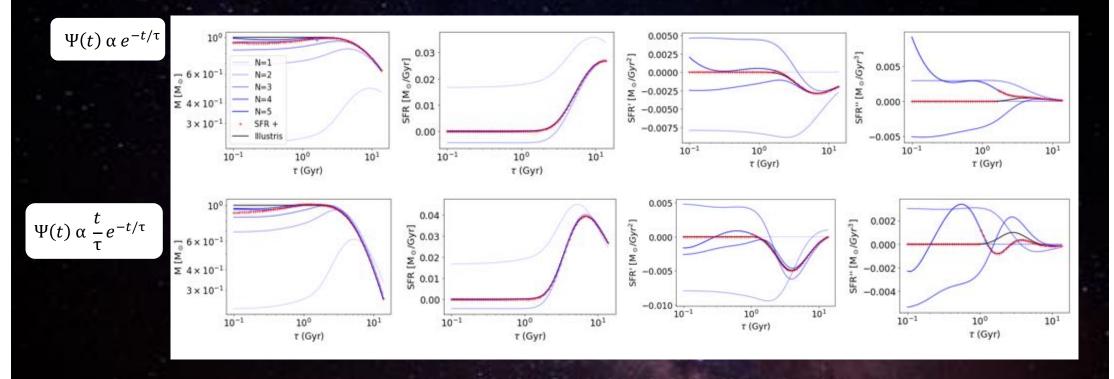
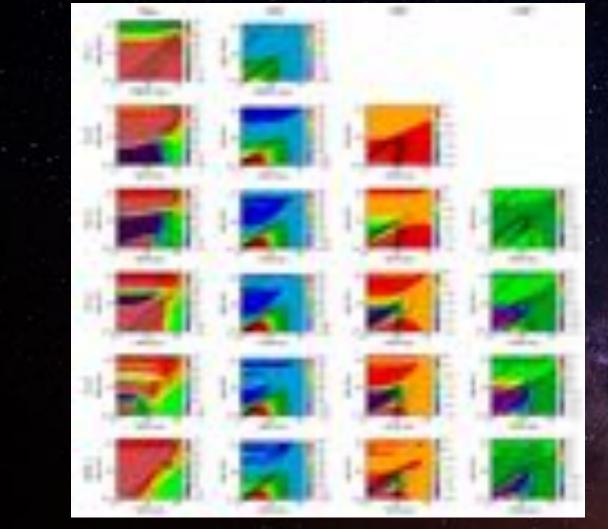


Figure 6. Estimates of the MFH reconstructed at the present time for the exponential (upper row) and delayed-τ (bottom row) synthetic SFHs with different timescales, τ, compared with the correct values (solid black lines). Red crosses correspond to the best positive-SFR fit.



	$-(t_0-\alpha-t)^2$
$\Psi(t) \alpha e^{2}$	$2\sigma^2$

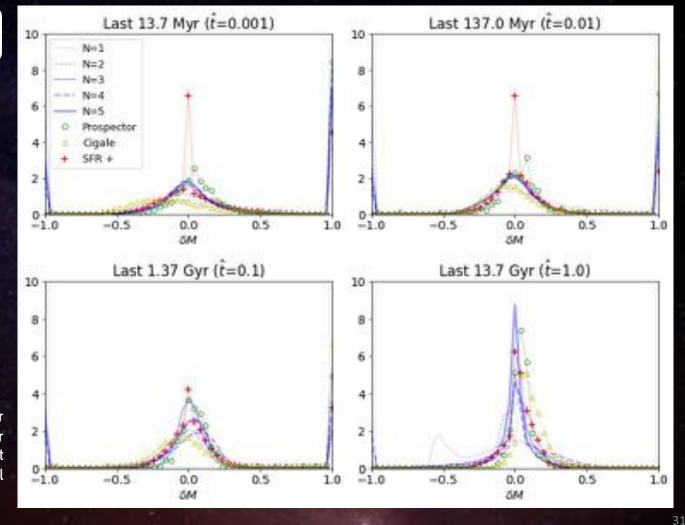
U

Figure 7. Estimates of the MFH reconstructed at the present time for the Gaussian synthetic SFHs with different ages and FWHMs, compared with the correct values (black contours).

IllustrisTNG-100-1

$$\delta M(\hat{t}) = \frac{\Delta M_{poly} - \Delta M_{sim}}{\left|\Delta M_{poly}\right| + \left|\Delta M_{sim}\right|}$$

Figure 8. Probability densities of the δM , for different values of the normalized lookback time for the polynomial methods (blue lines), the best positive-SFR fit (red crosses), the Prospector model (green circles), and the Cigale fit (yellow triangles).



RECONSTRUCTED HISTORIES

EXPONENTIAL SFH

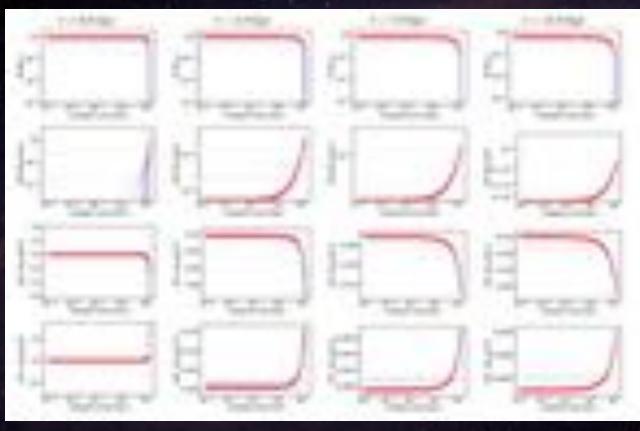


Figure 9. MFHs reconstructed from a sample of synthetic exponential SFR with different timescales τ , with our parametric model (blue lines) and the best positive-SFR fit (red crosses) compared to the input model (solid black line).

DELAYED -T SFH

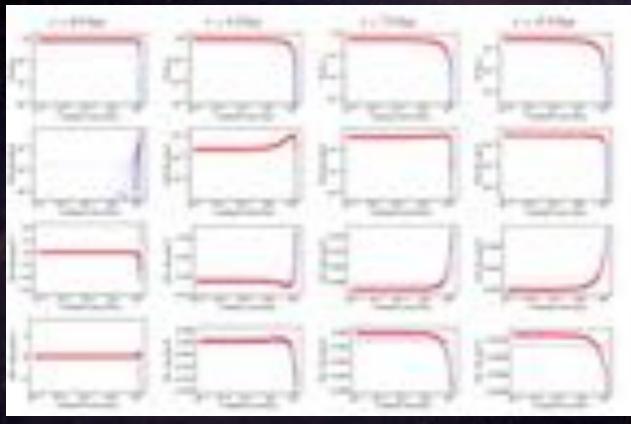


Figure 10. MFHs reconstructed from a sample of synthetic exponential-delayed SFR with different timescales τ , with our parametric model (blue lines) and the best positive-SFR fit (red crosses) compared to the input model (solid black line).

GAUSSIAN SFH: $M(\hat{t})$

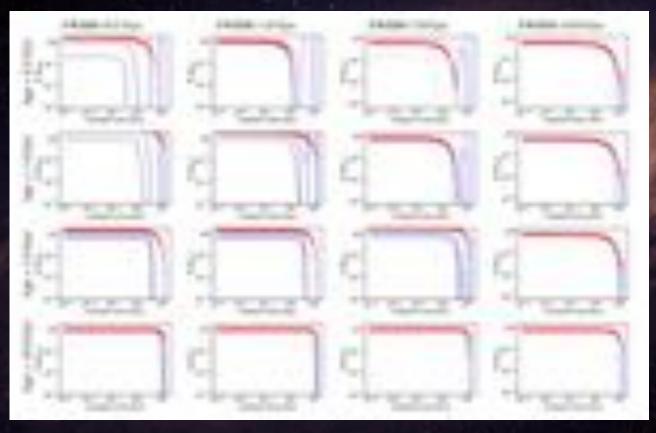
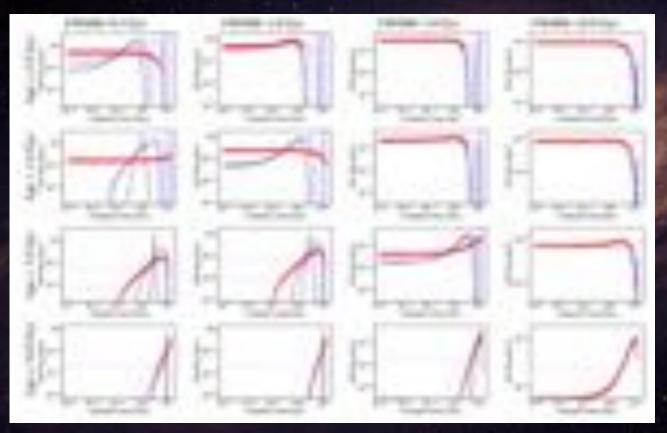
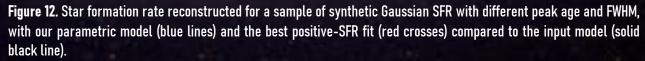


Figure 11. Mass formation history reconstructed for a sample of synthetic Gaussian SFR with different peak age and FWHM, with our parametric model (blue lines) and the best positive-SFR fit (red crosses) compared to the input model (solid black line).

GAUSSIAN SFH: $\Psi(\hat{t})$





GAUSSIAN SFH: $\dot{\Psi}(\hat{t})$

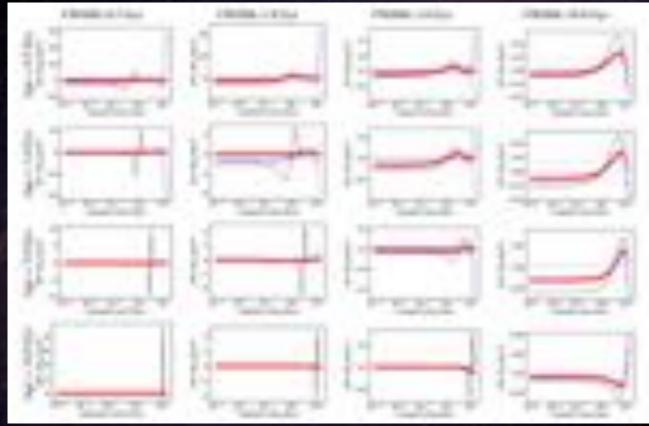


Figure 13. Time derivative of the star formation rate reconstructed for a sample of synthetic Gaussian SFR with different peak age and FWHM, with our parametric model (blue lines) and the best positive-SFR fit (red crosses) compared to the input model (solid black line).

Illustris sample: $M(\hat{t})$

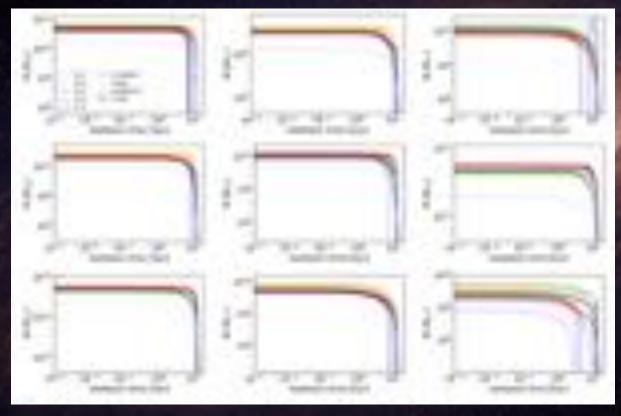


Figure 14. Mass formation history reconstructed for some of the galaxies of the Illustris sample with our polynomial model (blue lines), the best positive-SFR fit (red crosses), Prospector (green circles) and Cigale (yellow triangles), compared to the imput model (black solid lines)

Illustris sample: $\Psi(\hat{t})$

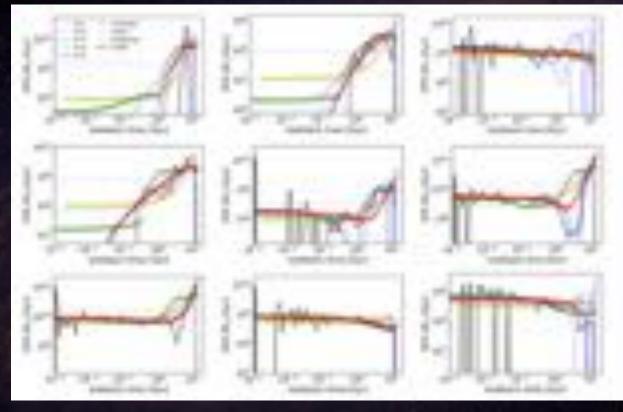
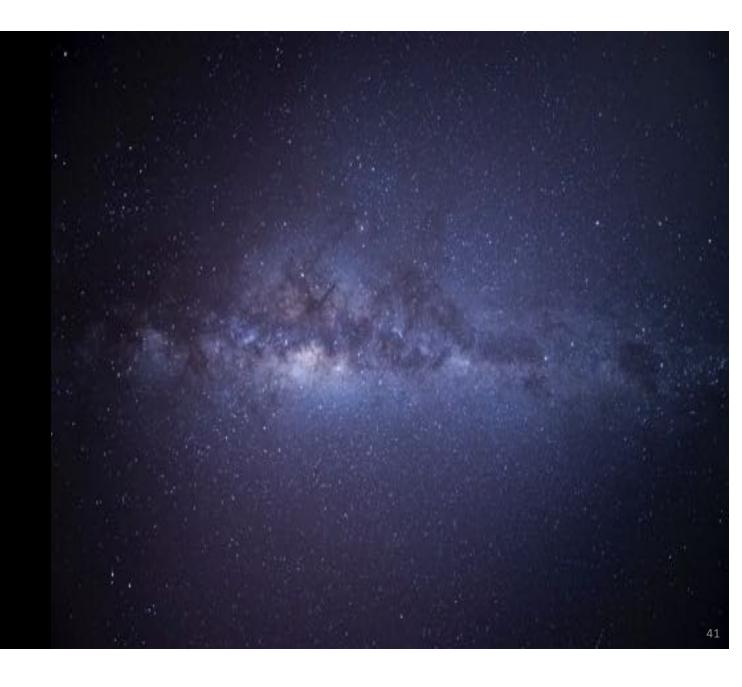


Figure 15. Star formation rate reconstructed for some of the galaxies of the Illustris sample with our polynomial model (blue lines), the best positive-SFR fit (red crosses), Prospector (green circles) and Cigale (yellow triangles), compared to the imput model (black solid lines)

- Method improves with:
 Higher characteristic timescales
 Higher polynomia degrees

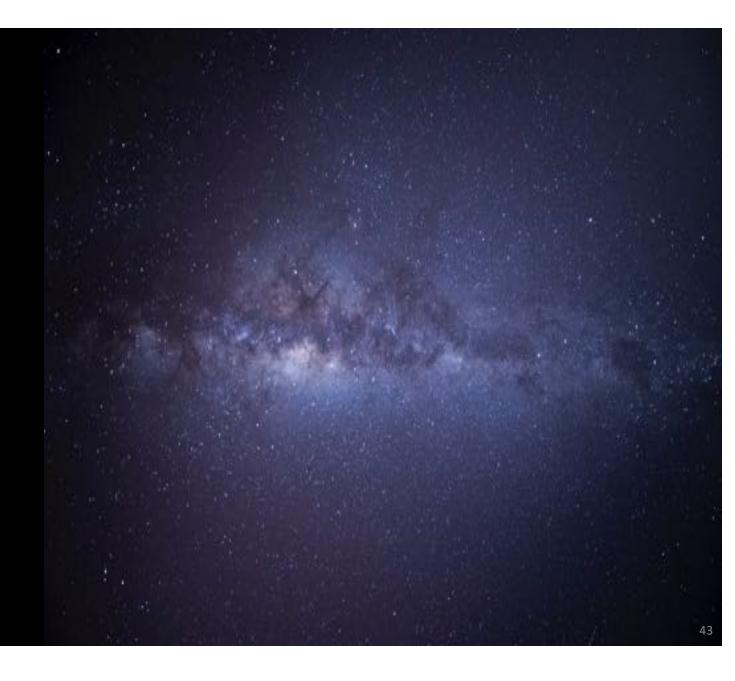


- Method improves with:

 Higher characteristic timescales
 Higher polynomia degrees
- Weakness:
 - Short timescales variations
 - Early peaks



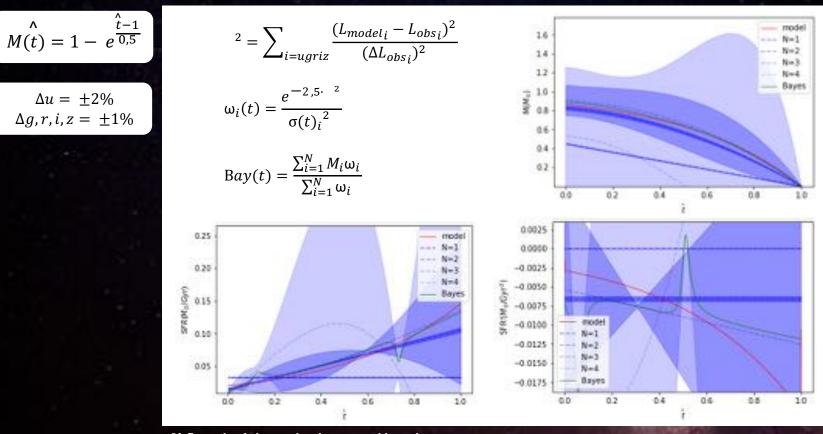
- Method improves with:
 Higher characteristic timescales
 - Higher polynomia degrees •
- Weakness:
 - Short timescales variations
 - Early peaks
- Strength:
 - High computational velocity (< 1 sec/fit)
 - Simple and accurate ٠



- Method improves with:
 - Higher characteristic timescales
 - Higher polynomia degrees
- Weakness:
 - Short timescales variations
 - Early peaks
- Strength:
 - High computational velocity (< 1 sec/fit)
 - Simple and accurate
- Ongoing work:
 - Observational errors
 - Bayesian treatment
 - Metallicity
 - Dust extintion
 - t_{in} and t_f as free parameters

THANK YOU FOR YOUR ATTENTION

SUPPLEMENTARY MATERIAL - OBS. ERRORS & BAYESIAN TREATMENT



S1. Example of observational errors and bayesian treatments.

 $\Delta u = \pm 2\%$ $\Delta g, r, i, z = \pm 1\%$

SUPPLEMENTARY MATERIAL – MATHEMATICAL FORMALISM

$$M^{(N)}(\hat{t}) = \sum_{i} \delta_{i}^{(N)} B_{i}^{(N)}(\hat{t})$$

$$B_{i}^{(N)}(\hat{t}) = \sum_{n=0}^{i} \beta_{n,i}^{(N)} \mathcal{M}_{n}^{(N)}(\hat{t}) \qquad \delta_{i}^{(N)} = \sum_{i} L_{obs}(\nu) L_{i}^{(N)}(\nu)$$

$$\mathcal{M}_{n}^{(N)}(\hat{t}) = \hat{t}^{n} - \hat{t}^{N} \qquad L_{i}^{(N)}(\nu) = \sum_{i} \beta_{n,i}^{(N)} \mathcal{L}_{n}^{(N)}(\nu)$$

$$B_{i}^{(N)}(\hat{t}) \cdot B_{j}^{(N)}(\hat{t}) = \delta_{ij} \qquad L_{M}(\nu) = \sum_{i} \delta_{i}^{(N)} L_{i}^{(N)}(\nu)$$

$$d^{2} = \sum_{i} [L_{M}(\nu) - L_{obs}(\nu)]^{2}$$

$$L(\nu) = \int_{0}^{t_{0}} \Psi(t) \mathcal{L}_{SSP}(\nu, t_{0} - t) d\hat{t}$$

S2. Compilation of mathematical formulas used in this work.