





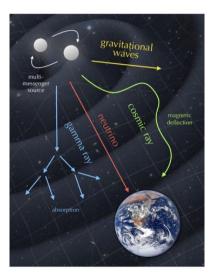
### Search for the origin of the cosmic-ray positrons Master Thesis

### Manuel Rocamora Bernal

supervised by Yago Ascasibar, Daniele Gaggero & Miguel Á. Sánchez-Conde

Universidad Autónoma de Madrid

May, 2022


### 1. Introduction

### Cosmic rays

Contributors to the galactic pressure and ionization

#### Sources

- Supernovae
- AGNs
- DM annihilations
- Young star forming regions



### 1. Introduction

### Cosmic rays

Extremely-high energy charged particles (up to  $10^{20}$  eV)

#### Components

- Primaries: produced directly by the cosmic-ray source
- Secondaries: produced by collisions or decays of the primaries

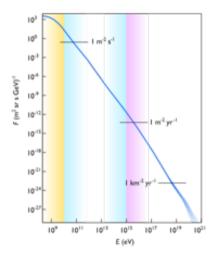



Figure: All particle spectrum of cosmic rays [Swordy, 2001]

For decades, it was though that cosmic-ray positrons were only produced in collisions of cosmic-ray nuclei (from supernovae) with interstellar matter [Moskalenko & Strong, 1998]

#### Observational problems

- Excess in the local positron fraction above 10 GeV [Adriani et al., 2009]
- Excess of 511 keV emission near the Galactic Centre [Knödlseder et al. 2005]

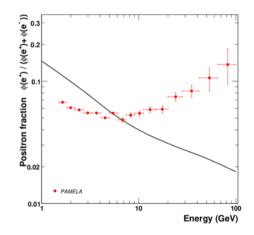



Figure: Positron fraction in the cosmic-ray spectrum measured by the PAMELA experiment [Adriani et al, 2009].

For decades, it was though that cosmic-ray positrons were only produced in collisions of cosmic-ray nuclei (from supernovae) with interstellar matter [Moskalenko & Strong, 1998]

#### Observational problems

- Excess in the local positron fraction above 10 GeV [Adriani et al., 2009]
- Excess of 511 keV emission near the Galactic Centre [Knödlseder et al. 2005]

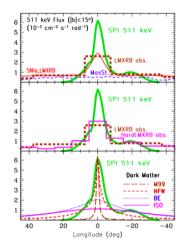



Figure: 511 keV flux as a function of galactic longitude [Prantzos et al., 2011].

### 1. Introduction

The nature of this source is still heavily debated The favoured candidates are pulsars and the annihilation of dark matter particles

#### Aim

Most works focus separately on the origin of the local positron excess or on the observed gamma-ray flux We explore the possibility of building a simple, self-consistent model that is able to explain them simultaneously, as a proof-of-concept

#### Procedure

Introduce an extra component DRAGON: Compute cosmic-ray propagation [Evoli et al., 2017] HERMES: Compute their associated radiation sky maps [Dundovic et al., 2021] Comparison with Fermi-LAT gamma-ray and radio sky maps

Codes available at https://github.com/cosmicrays Gamma-ray data at https://fermi.gsfc.nasa.gov/ssc/data/access/ Radio data at https://lambda.gsfc.nasa.gov/product/foreground/fg\_diffuse.cfm

### Diffusion - loss equation

$$\frac{\partial}{\partial t}\frac{dn}{dE}(\mathbf{x}, E) = \nabla \left[ K(\mathbf{x}, E) \nabla \frac{dn}{dE}(\mathbf{x}, E) \right] + \frac{\partial}{\partial E} \left[ b(\mathbf{x}, E) \frac{dn}{d\gamma}(\mathbf{x}, E) \right] + Q(\mathbf{x}, E)$$
(1)

Diffusion term Energy loss term

• 
$$K = K_0 \left(\frac{E}{E_0}\right)^{\delta}$$

•  $b(\mathbf{x}, E) \equiv -\frac{dE}{dt}(\mathbf{x}, E) = \sum_{i} b_i(\mathbf{x}, E)$ 

Source

#### Processes

- Inverse Compton Scattering
- Synchrotron radiation
  - 1.  $B_{ord}$  by [Pshirkov et al., 2011] 2.  $B_{ran} \propto exp\left(-\frac{r}{R_B}\right)exp\left(-\frac{|z|}{z_t}\right)$ with  $R_B = 8.5$  kpc,  $z_t = 4$  kpc
- Coulomb interactions
- Bremsstrahlung
- Ionization of hydrogen atoms

Hadrons:

• Pion production

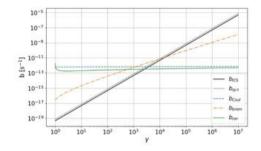



Figure: Energy loss for an electron in the solar neighborhood

### 2. Cosmic rays: Source

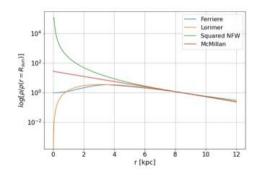
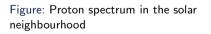
#### Primaries

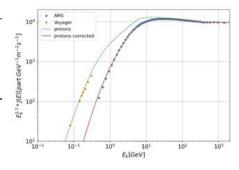
Shape: broken power-laws Morphology: Supernovae [Ferriere, 2001]

### Extra

Shape: power-law with cutoff Morphology:

- Squared NFW [Navarro et al., 1996]: Dark Matter
- Lorimer [Lorimer et al., 2006]: Pulsars
- McMillan [McMillan, 2016]: Old stars (tracing millisecond pulsars)



Figure: Injection profiles at z = 0 and normalised to their values at  $r = R_{sun}$ 

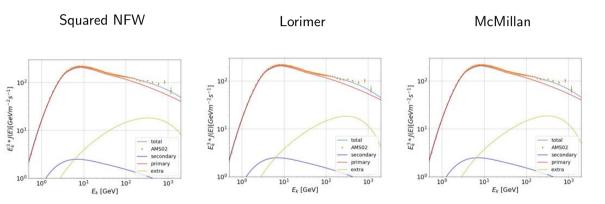
| Species | $\alpha_1$ | $E_{b,1}$ [GeV] | $\alpha_2$ | $E_{b,2}$ [GeV] | $\alpha_3$ |
|---------|------------|-----------------|------------|-----------------|------------|
| р       | 1.8        | 7               | 2.40       | 335             | 2.26       |
| He      | 2.0        | 7               | 2.28       | 165             | 2.15       |
| С       | 2.0        | 7               | 2.38       | 165             | 2.15       |
| 0       | 2.0        | 7               | 2.38       | 165             | 2.15       |

Table: Injection parameters used for nuclei. Taken from [Fornieri et al., 2020].

$$K_0 = 3.7 \ 10^{28} \ cm^2/s$$
  
 $\delta = 0.45$   
 $< \phi > = 0.54$ 



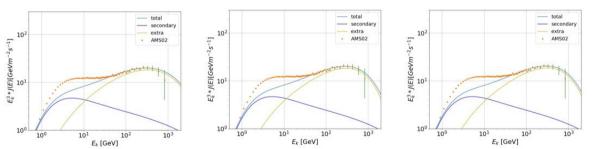



### 3. Cosmic-ray spectra: Lepton injection parameters

| $\alpha_1$ | $E_{b,1}$ [GeV] | $\alpha_2$ | $E_{b,2}$ [GeV] | $\alpha_3$ | $E_{b,3}$ [GeV] | $\alpha_4$ |
|------------|-----------------|------------|-----------------|------------|-----------------|------------|
| 1          | 4               | 2.3        | 9               | 2.75       | 40              | 2.55       |

Table: Injection parameters used for primary electrons. Taken from [Fornieri et al., 2020].

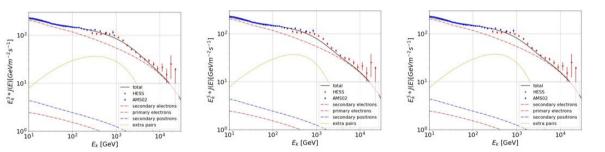
| Morphology  | $\alpha$ | Cutoff [GeV] | $\chi^2_{\nu}$ |
|-------------|----------|--------------|----------------|
| Squared NFW | 1.55     | 1800         | 2.37           |
| Lorimer     | 1.70     | 900          | 2.41           |
| McMillan    | 1.65     | 1000         | 2.48           |


Table: Injection parameters used for the extra  $e^+e^-$  injection.



Squared NFW

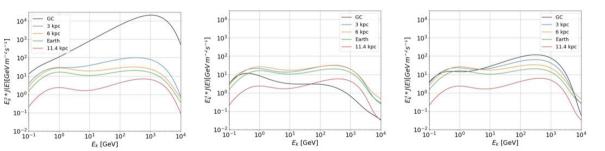



McMillan



Squared NFW







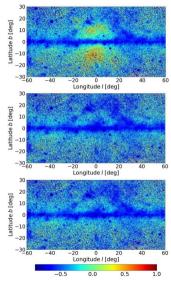

Squared NFW

Lorimer





### 4. Sky maps: 1 GeV gamma-ray sky maps



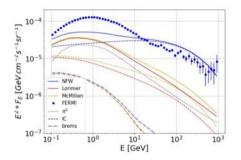

### 4. Sky maps: 1 GeV Residuals

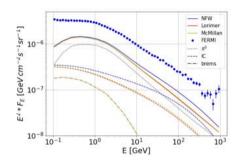


Lorimer





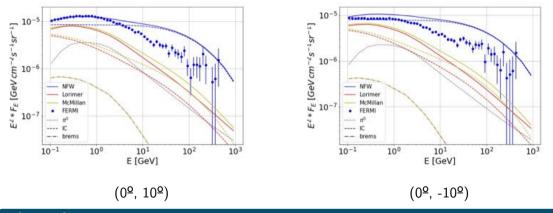

### Residuals: (model-data)/data


Lack of  $\sim$  60% in the galactic plane in every model

Overshooting of  $\sim$  50% above and below the center of the galaxy in the Squared NFW model

Lack at high latitudes ( $|b|>20^{\underline{\mathrm{o}}})$  in every model

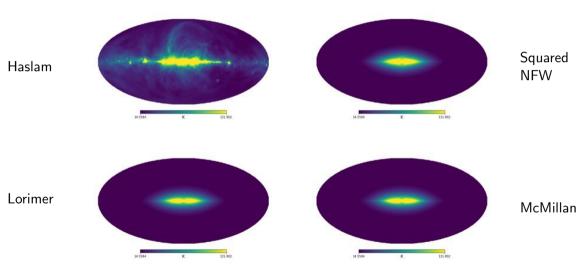
### 4. Sky maps: Galactic center & local gamma-ray spectra



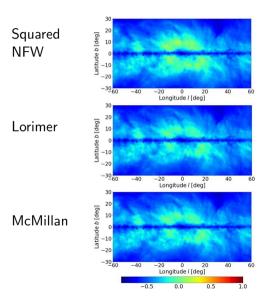



#### Galactic center

Lack at low energies The squared NFW model reach the data at high energies Local  $(40^{\circ} < I < 340^{\circ} \& 10 < |b| < 45^{\circ})$ Models well below the data


## 4. Sky maps: (0<sup>o</sup>, $\pm 10^{o}$ ) gamma-ray spectra



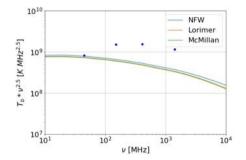

(0º, ±10º)

Squared NFW model is exceeding by roughly a factor of 2 in both regions

### 4. Sky maps: 408 MHz radio sky maps

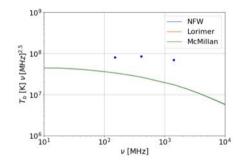


### 4. Sky maps: 408 MHz Residuals




#### Residuals: (model-data)/data

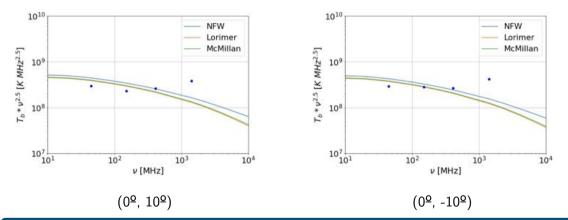
Lack in the galactic plane for every model


Lack at high latitudes (b  $>20^{\underline{o}})$  for every model

### 4. Sky maps: Galactic center & local radio spectra



#### Galactic center


Lack at high frequencies



#### Local

Models well below the data

# 4. Sky maps: $(0^{\circ}, \pm 10^{\circ})$ radio spectra



0º, ±10º

The models fit the data at medium frequencies in both regions

### 5. Conclusions

#### Cosmic-ray spectra

Models fail at low energies

#### Sky maps

Astrophysical source models are well below the experimental data DM model may overshoot the data by roughly a factor of 2 in some regions

### Overall conclusion

These results should be taken as a proof-of-concept. Reproducing simultaneously both excess of positrons and gamma-ray sky seems possible, but requires further modelling (in-flight annihilation, radio absorption) and more careful investigation of the parameter space (cross section, magnetic fields)

# The End