Exploring the dust properties in galaxies at z~2 with SHARDS

Esther Marmol-Queralto & Ignacio Ferreras P. Perez-Gonzalez, A. Cava, R.J. McLure + SHARDS team Project 31 -merged with project 6

2nd SHARDS Team Meeting, Madrid

Attenuation law not universal

MW and LMC > dust absorption feature ~2175 Å SMC and starburst galaxies > no bump

Attenuation law not universal

MW and LMC > dust absorption feature ~2175 Å SMC and starburst galaxies > no bump

Nearby universe:

Wijensinghe+2011 with GALEX: no bump Conroy+2010 with GALEX+SDSS on disks: bump Wild+2011 from SED analysis: bump

Constraining the dust attenuation law with NUV+optical (restframe) photometry: M82

Hutton, Ferreras+2014

• Swift/UVOT data for M82 around the 2175 Å bump

BCO3 models

>>> A (bump-less) Calzetti law is ruled out.

- Attenuation law not universal
- Attenuation includes dust geometry and radiative transfer effects, with may in part explain the observed differences
- Also it reflects differences in the dust composition

- Attenuation law not universal
- Attenuation includes dust geometry and radiative transfer effects, with may in part explain the observed differences
- Also it reflects differences in the dust composition
- UV bump may influence the measurement of the UV β slope, and hence the dust corrections made through the Meurer relation

A more generic attenuation law Conroy, Schiminovich, Blanton 2010-CSB2010 Variable NUV bump strength B Total-to-selective extinction ratio Rv = Av/E(B-V)

3000

 λ (Ang)

4000

Does the dust attenuation law vary at z>0?

Buat+2012 MUSYC photometry 0.95 < z < 2.2

- 20% of galaxies with detected bump, 90% of them with z<1.5
- The global amount of dust attenuation increases with mass and decreases with UV luminosity
 - The mean values of B and δ are similar to LMC supershell

Change of the slope around 2175 Å

Does the dust attenuation law vary with the galaxy type?

NEWFIRM photometry 0.5 < z < 2.0

SED types with steeper attenuation curves have stronger UV bumps, while shallower attenuation curves go together with weaker UV bumps. WARNING: for the Calzetti law, the dust content and sSFR could be significantly overestimated. Stellar mass are more robust, and are only slightly underestimated.

Does the dust attenuation law vary with the galaxy type?

NEWFIRM photometry 0.5 < z < 2.0

SED types with steeper attenuation curves have stronger UV bumps, while shallower attenuation curves go together with weaker UV bumps. WARNING: for the Calzetti law, the dust content and sSFR could be significantly overestimated. Stellar mass are more robust, and are only slightly underestimated.

A more generic attenuation law

Hutton, Ferreras & Yershov, MNRAS, submitted Swift/UVOT+SDSS photometry Detailed study of M82

A proof of concept

INPUT

Set of simulated populations of different SFHs (SSP, EXP: tau models, 2SSP) > it is possible to recover B and Rv

With SHARDS we will probe the NUV bump region with more data points (at 1.5<z<2.0), and the NIR filters will constrain Rv.

Hutton, Ferreras & Yershov, MNRAS, submitted

A proof of concept

Hutton, Ferreras & Yershov, MNRAS, submitted

OUTPUT

A more generic attenuation law

Hutton, Ferreras & Yershov, MNRAS, submitted Swift/UVOT+SDSS photometry Detailed study of M82

Project with SHARDS SF galaxies 1.5 < z < 2.5 Morphology

- >> 8272 initially selected at 1.5 < zphot < 2.5
- >> 2434 galaxies with good photometry and galfit parameters
- >> 410 of those galaxies with zspec -rainbow+candels- (16 %)
- >> 291 SF galaxies fulfilling all the criteria (11 %)
- >> Exploit SHARDS data + ancillary data (IR)

Nebular emission in high-z galaxies: results from the photometry

Esther Marmol-Queralto Ross McLure & Fergus Cullen

Idea

Idea

Photometric data: CANDELS

Rest-frame UV-midIR (Spitzer/IRAC 3.6 and 4.5μ m) Deep HAWKI-Ks data from HUGS -Fontana+2014

> SED fitting with LePhare code Bruzual & Charlot2003 models Chabrier IMF Exponential declining τ SFH Solar/subsolar metallicity Calzetti/SMC attenuation curve

GOODS-S: Guo+2013

UDS: Galametz+2013

>>> secure specz

A clear flux excess is detected in the photometric bands where the nebular emission lines are expected: flux in the continuum from the SED

Evolution of $EW(H\alpha)$ with redshift

