Early formation of compact spheroids by disc instabilities, compaction and quenching

Daniel Ceverino (CAB, Madrid)

Anatoly Klypin, Avishai Dekel, Frederic Bournaud, Andreas Burkert, Reinhard Genzel, Joel Primack, Adi Zolotov

SHARDS, 2015

7.7 Mpc/h Bolshoi

Spiral Galaxy M101

Hubble Space Telescope • ACS/NFC

- Galaxy Formation in a ΛCDM Universe.
- Dynamic range:

From Mpc to pc scales

Physics:

Gravity plus gas physics

Our tool: Cosmological Simulations of Galaxy Formation

0.5 Mpc/h
baryons
5 35 pc reso.

2 ensity

"Early formation of massive, compact, spheroidal galaxies with classical profiles by violent disc instability or mergers"

Ceverino, Daniel; Dekel, Avishai; Tweed, Dylan; Primack, Joel, MNRAS, 447, 3291 (2015)

"Compaction and quenching of high-z galaxies in cosmological simulations: blue and red nuggets"
Zolotov, Adi; Dekel, Avishai; Mandelker, Nir; Tweed, Dylan; Inoue, Shigeki; DeGraf, Colin; Ceverino, Daniel; Primack, Joel R.; Barro, Guillermo; Faber, Sandra M., MNRAS, 450, 2327 (2015)

Cluster/Chain Galaxies: Fragmented

Rest-frame UV

Disks

SINS collaboration

Foerster Schreiber, Shapley et al. 2008

Elmegreen & Elmegreen 2005, Elmegreen et al. 2007,2009

A relic from a violent past?

- NGC 1277: M=10^11
 Msun, Re=1 kpc
- Which is the main formation scenario?
- internal vs external processes?
- alternative scenario to the merger picture

Dekel, Sari, Ceverino 09

smooth streams

Clump formation

stream clumps

mergers

migration

gravitationally-driven turbulence

VS

turbulence dissipation

Galaxy formation simulations done with ART

- AMR code: ART (Kravtsov et al 1997, Kravtsov 2003)
- Gas Cooling, Star Formation, Stellar Feedback (Ceverino & Klypin 2009; Ceverino, Dekel and Bournaud 2010)
 - Cooling below 10⁴ K (minimum temperature of 300 K).
 - Thermal feedback + runaway stars.
 - Things that we are NOT doing (although it is tempting):
 Shutdown cooling, shutdown of hydrodynamical forces.
- Sample of 100 halos with a virial mass between 10¹¹ M_☉ - 5 x 10¹² M_☉ at z≈1
- Maximum resolution of 15-70 pc

Clumpy Discs in Galaxy Formation Simulations of z~2 galaxies

Dekel, Sari & Ceverino 2009 Ceverino, Dekel & Bournaud 2010

Gas Surface Density

A Massive Bulge

Stellar Surface Density

Face-on view

Edge-on view

The sample at z=1

A large variety of shapes: from compact spheroids to discs as well as merger remnants

Spheroid and disk components

Sersic fitting for different components

- Classical spheroids:<n>=4.3 ±1.4
- Exponential Discs:<n>=1.5 ± 0.6
- No redshift evolution

Violent disk instability leads to compact and classical, spheroids

Comparison with NGC 1277

- stellar mass of Ms=0.9
 10^11 Msun at z=2
- Re=1.4 kpc , n=2.9

Comparison with NGC 1277

- S/T=0.7
- Spheroid: n=4 Re=1.4 kpc
- Disc: n=1.5, Re=1.3 kpc
- 80% stars formed in-situ

Continuous spheroid and disc growth

- Continuous disc growth fueled by gas accretion
- Continuous spheroid growth due to VDI
- Major mergers only produces discrete and rare jumps in the spheroid growth.
- This galaxy double its mass between z=2.8 and z=2.1, a 0.8 Gyr period

Compaction: wet origin of the bulge

- Compact spheroid is the result of a dissipative "wet" inflow: t_{inflow} << t_{SFR} (Dekel & Burkert 2014)
- 60-30% of the bulge stars form in the bulge → wet inflow
- driven by VDI or mergers

Fraction of bulge stars born in different components

Zolotov et al. (2015)

Compaction & Quenching

Compaction & Quenching

- Diffuse phase
- compact phase:blue nugget
- quiescent phase: red nugget

Compaction & Quenching

Conclusions

- High-z, gravitationally-unstable discs break into Giant Clumps that migrate to the center.
- Final products of violent disk instability are compact, classical spheroids or S0s.
- Compaction is produced by dissipative "wet" inflow: blue nuggets
- Quenching proceeds inside-out by the decrease of wet inflow to the center

