Stellar populations and SFH with SHARDS

Results from a mass-selected sample of 0.65<z<1.1 galaxies

Antonio Hernán Caballero

Instituto de Física de Cantabria - UC

Almudena Alonso-Herrero, Pablo G. Pérez-González,

Nicolás Cardiel, Antonio Cava, Ignacio Ferreras, Guillermo Barro, Laurence Tresse, Emanuele Daddi, Javier Cenarro, Christopher J. Conselice, Rafael Guzmán, Jesús Gallego

Bimodal Galaxy Distribution

The local mass-age relation

- Strong bimodality in mass-age relationship
- Conflicts with models of hierarchical galaxy formation ?
- Typical mass of red sequence galaxies increases with redshift
- Star formation moves to smaller galaxies at later epochs (downsizing)

Outline

- How to meassure the 4000 break with SHARDS (and not die while trying)
- Breaking the age-extinction degeneracy

Science results:

- Mass-dependency of galaxy properties
- Smooth transition blue cloud \rightarrow red sequence
- Fraction of galaxies with SF in decline at z~1

The 4000 Å spectral break: physics

- Strongest discontinuity in the optical spectrum for old galaxies (>1 Gyr)
- Accumulation of absorption features at ~4000 Å (CN band, Ca II H+K lines,...)
- Strong in cold stars
 Weak in hot stars
 AGE INDICATOR FOR STELLAR POPULATIONS

The D(4000) index

Measures the strength of the 4000 Å break Two definitions: • Bruzual (1983): 20nm bands 0.8 • Balogh+ (1999): 10nm bands Nn 0.6 0.4 Ratio of the average f, in the red mmmmmm D(4000) and blue bands 0.2 (Bruzual 1983) $D(4000) = \frac{\int_{red} f_{\nu}(\lambda) d\lambda}{\int f_{\nu}(\lambda) d\lambda}$ 0 g 0.8 D_n(4000) XnL 10.6 (Balogh+1999) 2.5 log D(4000) is a rest-frame color index like *u-g* or U-V.... 0.4 0.2 ...but much less sensitive to the continuum slope 0 4000 3000 3500 4500 5000 Wavelength (Å)

First SHARDS Team Meeting, June 20, 2013

Trends with age, extinction, and metallicity

- Metallicity important only in old (>1Gyr) stellar populations
- Impact of extinction ~3x higher in U-V compared to log Dn(4000)
- Age: U-V linear with log t, Dn(4000) nearly flat for t<300 Myr

The 4000 Å break as seen by SHARDS

The impact of spectral resolution

D(4000) measured on synthetic SHARDS photometry from 1377 zCOSMOS spectra

Sources of error for D(4000) measurements:

- Photometric errors
- Redshift uncertainty
- Interpolation error

Interpolation error introduces bias: D(4000)_{synth} < D(4000)_{full}

Bias & dispersion is worse for $D_n(4000)$

Calibration of D_n(4000) measurements (I)

Calibration of D_n(4000) measurements (II)

The mass-selected SHARDS sample

Sample selection:

✓ Rainbow source (3.6µm detec.)
✓ SHARDS counterpart within 1"
✓ 0.65 < z < 1.07

✓ M∗ > 10⁹ M_☉

98% completeness down to $10^9 \, M_{\odot}$

Trends with stellar mass (I)

- Average SEDs in bins of mass: increasingly red UV-optical SED at higher masses
- Both age and extinction could be responsible for this trend
- SHARDS: 4000 Å break and [OII] line imply age is dominant factor

Trends with stellar mass (II)

- Both U-V and Dn(4000) increase with M_{\ast}
- Dn(4000) dispersion ↑ while for U-V ↓
 ¿caused by extinction?
- Green valley galaxies could be:
 - a) transitioning to red sequence
 - b) dusty star-forming galaxies

Extinction-corrected colors required!

The U-V vs D_n(4000) diagram

Breaking the age-extinction degeneracy

Method: Projection onto the Dust-Free Sequence

- 1) Obtain ML estimates for U-V and Dn(4000)
- 2) Translate // to A_v until intersection with DFS

Extinction-corrected U-V color

- Trend with M_{*} unchanged
- Dispersion \downarrow for $M_*{<}10^{10}M_{\odot}$, \uparrow for $M_*{>}10^{10}M_{\odot}$
- Still many sources in the green valley

First SHARDS Team Meeting, June 20, 2013

A crowded green valley

Universidad Complutense de l

ARDS Team Meeting, June 20, 2013

Extinction-corrected U-V color

- Large intrinsic green valley population (in stark contrast to Cardamone+2010)
- Different stellar templates & IMF does NOT explain discrepancy
- It's the method, stupid!

Light-weighted stellar ages

Extinction-corrected Dn(4000) gives age of a SSP

- Weak sensitivity to Z for *t*< 1Gyr
- Galaxy: t_{ssp} is light-weighted AVG
- *t*_{ssp} ≠ typical age of stars (young stars dominate *t*_{ssp})

For star-forming galaxies, t_{ssp} correlates with the specific SFR (see Almudena's presentation)

Comparison to the local Universe

Low-z sample: SDSS DR1, 14.5<r<17.0 (<z> ~0.1) *Kauffmann et al.(2003)* **z~1 sample:** SHARDS, M_{*}>10⁹M_o (0.65<z<1.07) *Hernán-Caballero et al. (2013)*

z~1 sources show:

- Lower Dn(4000) in all mass bins
- Weaker or absent bimodality
- Young stellar populations in massive galaxies

Comparison to the local Universe

First SHARDS Team Meeting, June 20, 2013

Comparison to the local Universe

SDSS sample:

- SFR in decline for all M_{*} bins
- 70% declining at M_* ~10^{9.5}
- •~100% declining at M_{*}>10^{11.5}

SHARDS sample:

- SFR not in decline at M_{*}<10^{10.5}
- 5% declining at M_{*}~10^{9.5}
- •~80-90% declining at M_{*}>10^{11.5}

or halted star formation (t_{ssp} >300Myr) 1.0 SDSS sample 0.8 SHARDS sample Gyr 0.3 0.6 \wedge t ssp frequency 0.4 t_{ssp}>4Gyr 0.2 0.0 9.0 9.5 10.0 10.5 11.0 11.5 12.0 $\log (M_*/M_{\odot})$

Fraction of galaxies with declining

Summary

- SHARDS spectral resolution enough to meassure Dn(4000)
- We reach 10 times deeper compared to spectroscopy
- Color-mass relation dominated by stellar age
- U-V + Dn(4000) \rightarrow A_v estimate independent of age, Z
- Extinction corrected U-V: crowded green valley
- z~1 galaxies have younger stellar populations at all M*
- Bimodality of Dn(4000) distribution not well developed at z~1
- Strong mass-dependency of declining SFR at z~1