

"Update on determinations of galaxy physical parameters from multi-X observations"

S. Charlot - SHARDS Meeting, Madrid, 21 June 2013

Context

Different types of multi-A observations from which to constrain galaxy physical parameters

Point on standard approaches to interpret galaxy SEDs

New framework

→ relative merits of different types of (photometric/spectroscopic)
observations to retrieve galaxy physical parameters
→ low-resolution spectroscopy

S. Charlot - SHARDS Meeting, Madrid, 21 June 2013

S. Charlot - SHARDS Meeting, Madrid, 21 June 2013

Different types of observed galaxy spectral energy distributions...

Require versatile models to

→ interpret various types of galaxy spectral energy distributions

→ assess relative merits of different types of observations to constrain galaxy physical parameters (help plan for future observations)

Standard approaches to interpret galaxy SEDs

Interpret (often separately) contributions by stars, gas and dust

- → stellar optical and near-infrared emission (ages, metallicities, mass)
- → nebular emission lines (interstellar parameters, SFR)
- → ultraviolet and infrared emission (dust, SFR)
- Also, several sophisticated algorithms to recover star formation (and chemical enrichment) histories from optical SEDs

→ e.g. MOPED (Heavens et al. 2000); STARLIGHT (Cid Fernandes et al. 2005); STECKMAP (Ocvirk et al. 2006); VESPA (Tojeiro et al. 2007);
GOSSIP (Franzetti et al. 2008); GalMC (Acquaviva et al. 2011)

These algorithms generally require high signal-to-noise ratio and neglect contribution by nebular emission to optical light

→ affects interpretation of stellar absorption lines (potentially contaminated by emission), especially at low spectral resolution 5. Charlot - SHARDS Meeting, Madrid, 21 June 2013

New approach based on combination of different types of models (Pacifici, SC, Blaizot & Brinchmann 2012)

→ Star formation and chemical enrichment histories from the semi-analytic post-treatment of cosmological simulations (Millennium + GALICS: SFHs rescaled and extended not be limited to model predictions; also GASOLINE SPH)

→ Latest progress in spectral modeling of stellar populations (GALAXEV)

→ Nebular (continuum+line) emission (CLOUDY)

→ Recent prescriptions for attenuation by dust (2-component model + uncertainties linked to optical properties and spatial distribution of the dust and orientation effects; Chevallard et al. 2013)

comprehensive ranges of models parameters

S. Charlot - SHARDS Meeting, Madrid, 21 June 2013

Can assess retrievability of physical parameters as a function of R and S/N

→ produce pseudo-observations by adding noise to model spectra

→ likelihood distributions of physical parameters through comparisons with models in library (Bayesian approach)

→ accounts for contamination of stellar absorption lines by nebular emission (even at low R)

Global results for 10,000 pseudo-observed galaxies (wide range of true parameters) \rightarrow high quality abcompations (S/N=20)

 \rightarrow high-quality observations (S/N=30)

Global results for 10,000 pseudo-observed galaxies (wide range of true parameters) → high-quality observations (5/N=20)

Global results for 10,000 pseudo-observed galaxies (wide range of true parameters) \rightarrow high-quality observations ($\overline{S/N}$ =20)

→ extendable to the analysis of any type of observation (e.g. combination of photometric and spectroscopic data) across wavelength range accessible to spectral evolution models
S. Charlot - SHARDS Meeting, Madrid, 21 June 2013

Example of application: interpret combined broadband photometry and DEEP2 spectroscopy of galaxies at redshifts out to ~1.5 (Pacifici et al. 2013a)

Other example: interpret infrared grism spectroscopy of z~2 galaxies from 3D-HST survey (to be combined with UV-FIR photometry from FIREWORKS)

