Co-orbital exoplanets from close period candidates: The TOI-178 case

Adrien Leleu, Jorge Lillo-Box, Marko Sestovic, Philippe Robutel, Alexandre Correia, Nathan Hara, Daniel Angerhausen, Simon Grimm, Jean Schneider. 2019. Co-orbital exoplanets from close-period candidates: the TOI-178 case. Astronomy and Astrophysics 624, 1-9 DOI https://doi.org/10.1051/0004-6361/201834901

Despite the existence of co-orbital bodies in the solar system, and the prediction of the formation of co-orbital planets by planetary system formation models, no co-orbital exoplanets (also called trojans) have been detected thus far. Here we study the signature of co-orbital exoplanets in transit surveys when two planet candidates in the system orbit the star with similar periods. Such a pair of candidates could be discarded as false positives because they are not Hill-stable. However, horseshoe or long-libration-period tadpole co-orbital configurations can explain such period similarity. This degeneracy can be solved by considering the transit timing variations (TTVs) of each planet. We subsequently focus on the three-planet-candidate system TOI-178: the two outer candidates of that system have similar orbital periods and were found to have an angular separation close to π∕3 during the TESS observation of sector 2. Based on the announced orbits, the long-term stability of the system requires the two close-period planets to be co-orbital. Our independent detrending and transit search recover and slightly favour the three orbits close to a 3:2:2 resonant chain found by the TESS pipeline, although we cannot exclude an alias that would put the system close to a 4:3:2 configuration. We then analyse the co-orbital scenario in more detail, and show that despite the influence of an inner planet just outside the 2:3 MMR, this potential co-orbital system could be stable on a gigayear time-scale for a variety of planetary masses, either on a trojan or a horseshoe orbit. We predict that large TTVs should arise in such a configuration with a period of several hundred days. We then show how the mass of each planet can be retrieved from these TTVs.

Otras publicaciones

Este sitio web utiliza cookies para garantizar que obtenga la mejor experiencia en nuestro sitio web.