Schmitt, M. I.;Tubiana, C.;Güttler, C.;Sierks, H.;Vincent, J. -B.;El-Maarry, M. R.;Bodewits, D.;Mottola, S.;Fornasier, S.;Hofmann, M.;Barbieri, C.;Lamy, P. L.;Rodrigo, R.;Koschny, D.;Rickman, H.;A’Hearn, M. F.;Agarwal, J.;Barucci, M. A.;Bertaux, J. -L.;Bertini, I.;Cremonese, G.;Da Deppo, V.;Davidsson, B.;Debei, S.;De Cecco, M.;Deller, J.;Fulle, M.;Gicquel, A.;Groussin, O.;Gutiérrez, P. J.;Hviid, S. F.;Ip, W. -H.;Jorda, L.;Keller, H. U.;Knollenberg, J.;Kramm, J. R.;Kührt, E.;Küppers, M.;Lara, L. M.;Lazzarin, M.;López-Moreno, J. J.;Marzari, F.;Naletto, G.;Oklay, N.;Pajola, M.;Prasanna, D.;Shi, X.;Scholten, F.;Toth, I.;Thomas, N. 2017. Long-term monitoring of comet 67P/Churyumov-Gerasimenko’s jets with OSIRIS onboard Rosetta. Monthly Notices of the Royal Astronomical Society, 469, DOI: 10.1093/mnras/stx1780, International Conference on Cometary Science – Comets – A New Vision after Rosetta and Philae
We used the OSIRIS camera system onboard the Rosetta spacecraft to monitor jet activity of comet 67P/Churyumov-Gerasimenko. With a monthly cadence, we covered an epoch from 2014 December to 2015 October, thereby including the first equinox and the perihelion passage. Jet features were measured in individual images, which were used to perform a statistical inversion. The study provides maps for the locations of likeliest sources of jet activity on the comet’s surface as a function of time. The sources follow the subsolar latitude, show clustering and a broadening of the activity band with time in the Northern hemisphere. In the Southern hemisphere, they are not clustered but show a broader spread over all longitudes which is either related to the north-south dichotomy of the comet’s topography or due to a higher insolation during southern summer.