Wind retrieval from temperature measurements from the Rover Environmental Monitoring Station/Mars Science Laboratory

Share on facebook
Share on twitter
Share on linkedin

Soria Salinas, A., Zorzano, M. P., Mantas Nakhai, R., Martín Torres, J. (2020). Wind retrieval from temperature measurements from the Rover Environmental Monitoring Station/Mars Science Laboratory. Icarus, 346 DOI: 10.1016/j.icarus.2020.113785

This work presents a novel method for the real-time retrieval of wind speed on the surface of Mars that uses temperature measurements from the Rover Environmental Monitoring Station (REMS) instrument onboard the Curiosity rover of the Mars Science Laboratory (MSL) mission. After final failure of the Wind Sensor (WS) in sol 1491, REMS has not been providing wind data. The new wind retrieval approach that we propose may eventually be able to supply MSL with wind values for contextualizing the rover’s operations and for meteorological studies on the surface of Mars. The new method is based on forced convection modeling of the Air Temperature Sensors (ATS) of REMS as thin rods immersed in the extreme low-pressure and high-radiating atmospheric conditions of the Martian thermal boundary layer at a height of similar to 1.5 m from the surface. A preliminary validation of the possibilities and limitations of this retrieval has been performed using comparative analysis with existing REMS wind field-site data for the same sols that are available at the Planetary Data System (PDS). We have developed both a «coarse» approach, in which wind speed is determined with no regard to wind direction, and a «refined» method, in which it is attempted to determine both wind speed and direction. Assuming the previously reported WS retrieval errors of 20% for the wind speed, we report an agreement to the WS values of wind speed ranging from 36.4% to 77% of the acquisition time for the «coarse» approach, depending on the sol examined. These promising results are limited to only evening extended acquisitions from 18:00 to 21:00 local mean solar time (LMST). This method could be applied to daytime conditions. The results suggest a new optimal orientation for wind speed retrieval of +60 degrees clockwise with respect to the forward direction of the Curiosity rover, although the technique is not yet ready to be considered for planning of the Curiosity rover operations. This method could extend the wind characterization of the Gale Crater for future Curiosity rover data acquisitions by recycling air temperature measurements and provide the scientific community with a data set for future comparative analysis with the Temperature and Wind Sensors for InSight (TWINS)/InSight, the Habitability: Brines, Irradiation and Temperature (HABIT)/ExoMars 2022, and the Mars Environmental Dynamics Analyzer (MEDA)/Mars 2020 rover instruments.

Otras publicaciones

This website uses cookies to ensure you get the best experience on our website.